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Abstraci— This paper presents a method to synthesize the
mask layout geometry for a MEMS wet etching process.
Given a desired part geometry, the method determines a
candidate mask geometry that will etch to the fnal desired
shape, even in the case of highly anisotropic etchants. It
will also compute compensation structures for difficult to
etch features. In cases where there does not exist a mask
geometry that will etch to the desired feature, an approx-
imate shape is produced. Conceptually, the algorithm is
based on the use of a forward etch simulation in reverse
time. Since the forward etch process is a many-to-one map,
the reverse time simulation is augmented to incliide the set
of valid preimages. While the methods are not inherentiy
restricted to planar geometry, our discussion is limited to
the case of planar polygonal feature geometries.

HKeywords— Anisotropic Etching, Mask-layout, bulk etch-
ing, wet etching, KOH, EDP, TMAH, photo-lithography.

I. INTRODUCTION

There is a significant need for engineering tools to sup-
port MEMS development by automating routine engineer-
ing functions. This paper describes an engineering tool for
automated mask-layout for wet etch micro-machining.

At present, a designer conceives of a MEMS function,
then (informally) creates a mask-layout that the designer
believes will eteh into a shape that will exhibit the desired
function. ' This process is based largely on the engineers
intuition and experience, and can be diffieult for complex
geometries or for novice engineers. A prototype device is
created from the candidate mask, and its actual function
is tested. This process may result in many design itera-
tions and prototypes. In some cases, manufacturing issues
dominate the design cycle.

Recently, researchers have developed algorithms and pro-
cedures to model and simulate the etching process. While
these simulators help reduce the number of prototypes, cur-
rent design procedures still rely heavily upon the designer’s
intuitive understanding of the etching process. Addition-
ally, the wide variety of micro-machining processes in use
today make this intuitive work even more difficult.

There has been diverse work in the general ares of
MEMS-CAD. Many of these tools deal with developing de-
vices for a specific function or analyzing the devices func-
tional or mechanical properties [1}, /2], '3\, Often manu-
facturing issues are not addressed. The work in this paper
is complimentary to these prior developments in that only
the effect of fabrication issues on the design is being ad-
dressed. Thus, this work has an analogous role to that of
traditional computer-aided-machining packages.

Traditional computer aided (macro scale) machining has
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two basic parts. Computer aided machining (CAM) sofi-
ware packages are used to set up the part geocmetTy and
generate the method to machine the part. The second part
is the actual physical machining of the part which is han-
dled by a CNC (computer numerically controlled) machine
tool. In this paper we will only look at the software plan-
ning (CAM) part and how some similar benefits may be
provided in the micro-machining process.

We can draw functional analogies between macro CAM
and micro-scale mask layout to give us a place to start
in developing tools for computer aided micro-machining
(#CAM).The capabilities of traditional macro-scale CAM
tools suggests the following goals for a pCAM toal:

» Automate the mask synthesis procedure.

« Aid in selecting the proper etchant and process parame-
ters(temperature, concentrations, ete. ).

+ Reduce Design Iterations.

o Increase Quality, Tolerance, Finish, and Repeatability.

» Shift focus to part geometry from machining procedure.

This paper develops & method to synthesize the mask
layout for a given etching process. That is, given a desired
part geometry and process characteristics, the computer
alded micro-machining algorithm determines 2 candidate
mask geometry that will etch to the final desired shape,
even in the case of highly anisotropic etchants. In cerigin
cases, there does not ezist o mask geometry that will yield
the desired shape. The clgorithm produces an approzimate
shagpe in this case. While our methods are not inherently
restricted to planar geometry, this paper considers only
the case of 2-dimensions. We also restrict our discussion
10 polygonal geometry. Curvilinear shapes can be well ap-
proximated by faceted polygons.

The mask synthesis procedure can be roughly thought of
as a reverse sirnulation process. The evolution of the part
shape during the etch process is a many-to-one map. The
challenge in the mask synthesis algorithm is to preserve
this feature.

Polygonal shapes decompose into edges and vertices, ver-
tices are categorized as either concave or convex. Further
we categorize vertices in which new planes appear dur-
ing the etching process 25 compound and those vertices in
which no planes appear as simple. This taxonomy will be
very useful in our computation of mask shapes for desired
output geometry. Mask geometry that produces a desired
feature of the output is its preimage.

In this paper we will describe algorithms and proce
dures for computing the preimage of each of the four types
of polygonal vertices, simple-concave, compound-concave,
simple-conver, and compound-conver. While simple ver-
tices have a single direct preimage which is easily computed,
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Fig. 1. Polar Etch Rate Diagrams (etch rate R vs. crystal orientation
&: 2D-Isotropic, 2D-Anisotropic, 3D-Anisotropic
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they also have multiple indirect preimages.

We also show that compound conver vertices have no di-
rect preimage and that we can algorithmically construct a
valid indirect preimage, also called a compensation struc-
ture. Finally, we will discuss the lack of any valid exact
preimages for compound concave vertices and methods to
approximate the geometry.

II. APPROACH

Wulf-Jaccodine [4], E-Shape [5], Slowmess [6], {7}, [8],
and Cellular Automata {5}, [9] are a few of the proposed
methods used to simulate etchant based micro-machining
process. Because of the complexities of anisotropic micro-
machining, the anisotropic case has received much of the
attention. This paper also focuses on the anisotropic case.

Simplisticly, our approach is based on reverse time sim-
ulation of the etch process and this want to identify a for-
ward simulation technique that can be imverted and can
also handle isotropic and anisotropic processes. The slow-
ness method satisfies these requirements and is based on
some well known tools in computational geometry that lend
to its ease of inversion. The slowness method also is exten-
sible from two to three dimensions and does not preclude
any etchants, that is, a continuum of etching characteris-
tics from isotropic to highly anisotropic are handled. We
now consider the forward etch process to point out those
features that are required for our inversion algorithm.

A. Eich Forward Simulation

The forward simulation method developed by Sequin [8]-

and Foote {7}, uses convex hulls to determine the rate of
etching of plane sections and also the change in topology
of the etched geometry.

The rate of etching of a plane section is given by the
etch rate diagram [10], {11}, [5], Figure 1. The etch rate
diagram for a particular process is a polar or spherical plot
of the angle of the ‘etch face normal’ plotted against the
rate of etch per unit time in that direction. The inverse
diagram, sometimes called the “slowness™ or “reciprocal
rate” diagram [6], [7], is also useful. This diagram is a
polar plot of the inverse of the etch rate against the etch
face normal angle, Figure 3.

As two adjacent planes advance during the etch process,

Fig. 2. Convex Hull Construction Over Slowness Diagram

the vertex that joins them also advances. Since the two
planes may be etched at different rates, the path of the
vertex may not be straight. Additionally, these plane edges
will increase or decrease in length during etching due to
this effect. Modeling and predicting the disappearance of
a plane or the appearance of new planes at a vertex is
fundamental to an etch simulation and ultimately to our
mask layout process.

Given a planar polygonal object consisting of n faces and
n vertices, the propagation of a simple vertex i under the
etching process can be described by a single vertex velocity
vector 'V, which describes the direction and rate at which
the corner propagates:

ik — Pi(Bi -flig1)

V; =iy + 73 (1)

N1 - T

where r; is the etch rate associated with edge e;, and 7
and %i; respectively denote the unit vectors tangent and
normal to edge ¢;. Note that r; is determined from the
etch rate diagram.

A convex hull construction is used to determine if new
planes will appear as a vertex is etched forward [6], [7], I8l
In Figure 2, face A and face B meet at a vertex. FEach
face has 2 corresponding etch slowness vector S(A) and
5(B). We define two different convex hull constructions,
one for each of the convex and concave class of vertices.
The “outer” convex hull, Figure 24, is the hull formed by
the S{A)—S(B) line and the vertices of the slowness dia-
gram outside this line. The “nner” convex hull, Figure 2B,
is the hull formed by the S(A)—S(B) line and the vertices
of the slowness diagram inside this line. H there exist hull
vertices outside the S(A)—S(B) line, then the concave ver-
tex splits into multiple vertices, each with its own unique
velocity vector. Likewise, if there exists vertices inside the
S(A)—S(B) line for a conver vertex, then the vertex splits
and new plane(s) are formed. The vertices of the inner
and cuter convex hulls correspond to the slowness vectors
(reciprocal rates) for the appearing planes. Note the com-
pound/simple characterization is a function of the local
geometry, its relative orientation to the crystal, etchant
properties, and process parameters.

In the case of pseudo-isotropic processes, many, if not
infinite, planes appear when certain vertices are etched.
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Fig. 3. (A) Concave Vertex, (B) Etch Rate Diagram, (C) Slowness
Diagram

The outer or inner convex hull may follow a curved section

of the slowness diagram. This emerging curved shape is

then approximated with facets at a specified resolution.
As discussed in [8] this method extends to 3 dimensions.

I11. pCAM PROCEDURE

We now present a method to compute the preimage for
each of the four types of polygonal vertices (“features”),
simple-concave, simple-convez, compound-concove, and
compound-convez. The “feature preimage” is a local mask
shape, that when etched for the specified time, will pro-
duce the desired single vertex in the specified position and
orientation. In some cases the preimages for two or more
vertices may have conflicts or overlaps. Computing a set
of preimages for each feature will allow global interactions
to be handled if necessary.

Given a-description of the desired output geometry, the
first task is to classify each vertex into one of the four
categories given above. Each vertex can be determined to
be concave or convex by computing the included angle and
determining if it is less than or greater than .

To determine if a vertex is simple or compound we com-
pute the convex hull of slowness vectors of the faces which
form the vertex and the included portion of the slowness
diagram.

A. Simple Concove Vertices

Simple-concave vertices have multiple preimages which
will etch to the desired shape. Therefore techniques for
computing multiple preimages are developed. Secondary
considerations may then be used to select 2 given preimage
from the range of possible preimages.

A1 Simple Concave Direct Preimage

For the simple-concave vertex there exists a direct preim-
age. 'The direct preimage is formed by running the
forward simulation in reverse-time without consideration
for potential topology changes (additional or deletion of
planes/vertices during the etch).

The procedure for simple-concave vertices is demon-
strated by example. A concave corner and the etch rate
and slowness diagrams for an EDP-like process is shown in
Figure 3. Figure 4 shows the slowness vectors for the two
faces forming the corner, the included portion of the slow-
ness diagram and the convex hull of the slowness vectors.
This diagram verifies that the slowness diagram does not

form any vertices in the outer convex hull, thus the hull
collapses to a line and this vertex is simple.

The propagation of vertex i during the etching pro-
cess can be described by a single verter wvelocity vector
Vi,(eq. 1), which describes the direction and rate at which
the corner propagates. The direct preimage for a given etch
time, 7, is computed by simply reversing the sign of V; as
shown in Figure 4. While the direct preimage provides a
single solution, there exists other valid preimages which
etch the desired vertex.

A.2 Simple-Concave Inner-Hull Preimage

To compute an alternative preimage, vertices con-
tributed by the inner convex hull are used. These vertices
represent the geometry which have the highest etch rates,
yet will still converge to the vertex at the desired etch time,
7. Since for some plane that exists in the preimage but dis-
appears at some time #;,0 < £; < 7, there exists a plane
further from the vertex that disappears at some time £,
t: <ty < T, the plane geometry “furthest” from the vertex
must disappear exactly at t = 7.

By forming the “inner” convex hull of the face slowness
vectors and the slowness diagram, the vertices of the convex
hull give the fastest plane(s) in the included angle as shown
in Figure 4. If the slowness diagram does not contribute
a vertex to the convex hull, then this method does not
contribute an additional preimage solution. Therefore we
wish to find the preimage of the geometry in which these
planes disappear exactly at ¢ = 7,

To visualize the approach to compute the preimage for
these disappearing planes, consider the planes on the verge
of disappearing at ¢ = 7— having size ¢, but still existing
in the topology of the part geometry. This new geometric
topology is composed of two or more simple-concove ver-
tices that have a direct preimage which are computed as
described above.

% SLOWNESS DIAGRAM SECTION
i AND CONVEX HULL (oveciap)

,{____.- OUTER CONVEX HULL (fla

SLOWNESS VECTOR OF
DIRECT APPEARING PLANE
PREIMAGE
DESIRED OUTPUT
INDIRECT
PREAMAGE

Fig. 4. Indirect Preimage Construction and Inner and Outer Preim-
age Bounds.

Another way to conceptualize this preimage construction
is to consider these inner hull vertices as guides to compute
multiple inverse vertex velocity vectors.

For our current example, Equation (2) is used to compute
the multiple vertex velocity vectors, denoted by Vi
Figure 4, where 7 is the vertex number and j € 1,% refers
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DESIRED OUTPUT
A) &) _
Fig. 5. (A) Convex Vertex, {B) Esch Rate Diagram, (C) Slowness

Diagram

to one of the k inverse vertex velocity vectors. Here, there
are two inverse vertex velocity vectors computed by:

. —r;i(f; -5
Vi = ?‘;'nz‘+“*“'“1—:—'ll Ty (2)
1
: . Tip1 =— T (Hi]
V-,;,g = T‘in’l-f- +2 1( L nH_l) (3)
L R

where r; is the etch rate associated with edge ¢;, and 7;
and fi; respectively denote the unit vectors tangent and
normal to e;. r],7{, and fi] are the respective values for
the new appearing plane (vertices of the inner convex hull).

Notice that the method presented in this section exam-
ines only those planes which lie in the inner convex hull
as candidates for inclusion. Thus the  :irning :7gle of the
local topology will not change sign. Also, these slanes can
be ingerted at intermediate points, not just at - = 0—. In
future work this restriction is lifted an examples of other
candidate preimages are developed.

B. Simple Convez

Computing the preimage for the simple-conver vertex is
very similar to the simple-concave case.

Figure 5 shows the convex vertex with the etch rate dia-
gram and slowness diagram. In Figure 6 the slowness vec-
tors for the two planes are shown with the included portion
of the slowness diagram and the convex hull. Notice that in
the case of a convex vertex we check the “inner” convex hull
and see that there are no vertices of the hull contributed
by the slowness diagram. Thus the vertex is indeed simple.

Equation (1) is used to compute the vertex velocity vec-
tor. It’s sign is reversed and the direct preimage is com-
puted in the usual way. See Figure 6.

The computation of an outer-hull preimage is similar to
the inper-hull preimage procedure for the simple-concave
vertex. The “outer” convex hull is used to determine which
planes move the slowest from the vertex. These planes are
used to compute the multiple inverse vertex velocity vectors
V.,; using Equation (2) as shown in Figure 6.

C. Compound Convez

Unfortunately the simple techniques that were employed
for the simpie vertices cannot be applied to compound ones.
A compound vertex, by definition, splits into two or more
vertices during etch progression, and thus has multiple for-
ward vertex velocity vectors and an appearing plane(s).

INNER CONVEX HULL dftat)
INDIRECT PREIMAGE

DIRECT FREIMAGE

Fig. 6. Indirect .Preima.ge Construction.

INVALID DIRECT
PREIMAGE

DESIRED OUTPUT
) ®

Fig. 7. (A) Compound Convex Vertex, (B) Etch Rate Diagram, (C)
Slowness Diegram

The complexity here is that the desired resultant topology
does not contain this appearing plane. However, any di-
rect preimage for this vertex will create this plane at time
t = 07. Thus the proper vertex could not be etched. '

Figure 7 shows a convex vertex with the associated etch
rate and slowness diagrams. The slowness vectors of the
two faces are shown in Figure 8 with the included portion
of the slowness diagram and the “inner” convex hull. The
vertices in the hull due to the slowness curve correspond to
the new planes that will appear in the forward etch of this
shape. Thus, this is indeed a compound vertex.

This situation can also be examined by looking at the
vertex velocity. If the simple direct preimage method were
used; the vectors would cross each other at ¢ = 0~ and
the resulting preimage geometry would be physically unre-

Fig. 8. Inmer and Outer Hull Construction
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alizable (Figure 7(a)}). Therefore, in the same way that an
indirect preimage for simple vertices was created, a physi-
cally realizable indirect preimage that will form the desired
compound-concave vertex must be computed.

Preimages for etching compound-conver vertices have
been called compensation structures in the literature.
There are many potential topologies for compensation
gtructures. The primary focus will be to obtain eny valid
preimage, then later discuss options for choosing from the
space of patential solutions. Therefore, simple three vertex
topologies will be examined first.

In order to avoid recursive compensation structures (a
compensation structure with a compound vertex) only
those structures with three simple vertices will be con-
sidered. Parameters for the description of a compound-
convexr vertex (¢, ap) and a generic three vertex compen-
sation structure {8z, 83, o1) are show in Figure 9.

To compute a compensation structure for a given ¢, ag,
the “fobetas” diagram is computed (Figure 10). Every
point of this diagram corresponds to a possible three-point
compensation structure. Those points that are white in
Figure 10, are inadmissible solutions in that at least one
vertex is not simple or the structure is not closed. The
admissible solutions (in grey), are normalized to indicate
the distance from the preimage vertex at o to the original
compound-conver vertex. Note, depending on particular
design trade-offs, other parameters may be used to compute
the contours on the 35 - 8z plot.

. Qo
B2
7N

Fig. 9. Parameterized Generic Vertex and 3-Point Compensation
Structure.

L] L a2 £2 -]
Bead

Fig. 10. B2- B3 diagram. Shaded areas are permissible compensation
structures. Grayscale value is the normalized distance of the
preimage vertex at oy from the corner vertex.

DESIRED QUTPUT
A)

B <

Fig. 11. (A) Compound Concave Vertex, (B) Etch Rate Diagram,
(C) Slowness Diagram

Other criteria may now be used to select from the candi-
date structures. For example, the structure corresponding
to coordinate (259, 25), Figure 10, may be selected due to
it’s distance from graph boundaries and size of the associ-
ated compensation structure. Once the structure has been
selected, the preimages for it’s three simple verticies may
be computed using the methods discussed in the previous
sections. Note that the preimages for these vertices are
not restricted to direct preimages. Resulting compenss-
,tion structures are shown in Figure 14.

D. Compound Concave

There does not exist a preimage that will micro-machine
a compound-concave vertex. Therefore, the best we can do
is approximate the geometry.

Locaily, any vertex preimage must have the same in-
cluded angle as the two planes that form the vertex. There-
fore, the plane(s) that appear at this vertex will appear in
the etching of any preimage that includes this angle. Since
these undesired plane(s} will appear in the output, the best

_we can do is to minimize their size. We know the speci-
fied etch time, and hence can compute the vertex velocity
vectors for these new planes and find which neighboring
planes will minimize their size,

Figure 11 shows a compound-concave vertex with the as-
sociated etch rate and slowness diagrams. To minimize the
length of new planes in the approximated geometry, we se-
lect neighboring planes in the preimage that minimize the
vertex velocity in the direction tangential to the plane it-
self. From Figure 12 we select a vertex with ¢ = 0 and
og = 270 {¢ and o defined as in Figure 9). These inserted
neighboring planes form a new topology for which a preim-
age can be computed using the methods deseribed above.
The dimension Do,y is given by:

4

where 7 is the specified etch time, € is the minimum line
width in the mask, and Vg min and Vi mir are the mini-
mum tangential velocities of the right and left vertices re-
spectively. _ .
Here we have described just one of many possible approx-
imations to the desired local geometry. Note, an approxd-
mate geometry must be chosen in which a valid preimage
exists for each new vertex. This approximate geometry
has now been decomposed into two simple-concave vertices

Do, =€+ VR,min “ T+ VL,mm *T
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Fig. 12. Vertex Velocity for candidate insertion planes for ¢ = 0.

APPROXIMATED RESULT DESIRED OUTPUT

Fig. 13. Resulting Approximated Geometry.

and. preimages can be computed using the methods of the
previous section.

A desired part geometry and the accompanying mask
is show in Figure 14. The mask was computed using the
methods described in this section. Note that the different
points on the 523; diagram were used for each of the two
compensation structures.

IV. ConcLusiONS & FUTURE WORK

We have laid a foundation for a Computer Aided Mi-
ero Machining system for wet etching. More work remains
to expand the set of available preimages for each of the
fours cases. Two important pieces remain to complete this
system: computing mask alignment sensitivity and process

Fig. 14. Desired Geometry and Computed Mask for KOH.

calibration. - One of the largest sources for errors in the
photolithographic etching process is misalignment of the
mask with the silicon crystal. The greater the anisotropy
of the machining process being used, the greater the poten-
tial errors caused by misalignment. Future work will focus
on developing a computable measure of the sensitivity of
geometry to misalignment errors which will be available to
the engineer during the mask layout process.

Secondly, the entire mask layout process relies on ac-
curate characterization of the etching process being used.
Most commonly this is represented in the form of an etch
rate diagram. Since etching characteristics vary signifi-
cantly with temperature, concentration, and even from fa-
cility to facility, it is important to develop a well engineered
procedure that will accurately characterize the process be-
ing used.
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