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ABSTRACT

In this work, we present an application of an
Arnoldi-based model order reduction (MOR) technique
on squeezed-film damping (SQFD) effects for
arbitrarily-shaped perforated geometries. The compact
models generated by this approach not only can be easily
inserted into a system-level modeling package for
transient and frequency analysis, but also accounts for the
effect of flow impedance of each perforation. The
simulated results of the reduced models show good
agreement with the experimental results. We also
demonstrated that this approach is at least 100 times
faster than previous works on perforated SQFD damping
simulation.
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INTRODUCTION

Perforations are often used in MEMS devices either
to reduce release-etch time or to control squeeze-film
damping effects. = Modeling of arbitrarily-shaped
perforated MEMS devices can be extremely complicated.
Most work in damping has focused on getting more
accurate simulations of the small or large signal gas
damping and spring effects [1-6]. However, these
studies are not suitable for effectively simulating
perforated surfaces because of neglecting the flow
impedance of perforation holes. Veijola [7] introduced
a special term into the SQFD governing equation, the
Reynolds equation, to account for the fofal acoustic
impedance effect due to evenly distributed perforations,
and derived compact analytically solutions.  This
approach provides designers compact and efficient SQFD
models for perforated devices, but is limited to the cases
of rectangular-shaped surfaces (with uniformly
-distributed perforations) for which the analytical
solutions exist. Yang [8] has developed a flow
impedance model with the Reynolds equation, and solved
the system using finite-difference method. Although
this methodology is applicable for the cases of arbitrary
plate-shapes and perforation- configurations, the
computational cost is very expensive due to the
complexity of meshes. In this work, we employ an

Amoldi-based MOR algorithm [9] to generate low-order
models from a Finite element (FEM) or Finite difference
(FDM) appreximation of the modified Reynolds equation
that is coupled with pressure leakage due to perforations.
The procedure of this approach is shown in Figure 1.
Because the model size of the low order system is much
small than the original FEM/FDM system, the transient
calculation is improved by about two order of magnitude.
Also, the frequency analysis can be easily performed
using eigen expansion techniques.
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Figure 1 Procedure of the efficient and accurate air
damping modeling for perforated MEMS devices
described in this paper

THEORY

The Arnoldi-based model order reduction (MOR)
algoritbhm known as PRIMA [9], which is commonly
used for model reduction of electrical interconnects, is
used for model extraction. Our approach is similar to
the model reduction approach used in [10]. In [10],
model reduction was applied to a linearized form of the
fully coupled electro-mechanical-fluid damped system.
Here, we focus on the correct modeling of perforation
effects, and treat the squeeze film damping separately
[11]. The SQFD models are built in the mechanical
mode shape basis. Such an approach would allow these
models to be readily combined with the mode shape
based models in the low order model of the entire system
[3]. Additionally, we show that the models can be used
for large-signal motion with certain restrictions.

To begin, the linearized Reynolds equation for
squeeze film damping from [1] is
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where the variation in plate spacing 4 is assumed to be
small compared to the mean spacing, #,, given by

h=hy+e(x,t)
with xeR? and e<< hy . The variation in pressure, P,
will thus be small compared to ambient,

P=P, + p(x,t)

In order to account for the perforation effect, we
employ an the modified Reynolds equation that is
coupled with pressure leakage due to perforations:
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where p is pressure variation, h is gap thickness, P, is
ambient pressure and u is viscosity. Note that the
derivation of this equation is based on the condition of
flow continuity [8]. The second term on the right-hand
side of Equation 2 accounts for the acoustic pressure
leakage due to perforation.

The impedance Z in the equation represents flow
impedance for each hole. The value of Z is in fact an
analytical form of pipe flow resistance, which can be
found in [8].

z= lf;/f ®
where L is the pipe length, D, is the diameter of the
perforation. The value of Z also depends on the
perforation location.  Z is infinite at the location where a
hole does not exist. In other words, the pressure
leakage term is eliminated at the location where a hole
does not exist. :

Equation (1) can be solved by finite-element or
finite-difference analysis for a given e(x,?). Let f(x)
be the shape (perhaps mode shape) of the displacement
so that e(x,#) = f(x)-u(z). The dynamic system from
discretizing (2) by FEM or FDM can be written in a state
space form as
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where 4,,4;,BeR™, n is the number of nodal
degrees of freedom, p is the pressure at the nodes, and
fis f(x) evaluated at the node points. y is then the
net force projected into the shape defined by f(x).

The matrices Ap and Az can be merged into a new
single matrix A, as shown in Equation 5.
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The dynamic system of (5) is too large to insert
directly into a system simulator such as SPICE or
SABER. We thus apply PRIMA to generate a low
order representation of (5) which still accurately captures
the dynamic behavior. To apply the PRIMA algorithm
to generate a k-th order model, k orthogonal vectors

{v;}e®" are computed which span the vector space
known as Krylov subspace:

K, = {(Bf), 47 B(Bf)..., (a7 B (Bf)}

These vectors can be stably computed via the
Amoldi algorithm [9]. Given the matrix ¥ whose
columns are {y; }, the reduced order model is

3
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where B=VTBV, A4=VT4V, and T=VTBf. The
attractive properties of such an approach are that the first
k Taylor series coefficients of the transfer function of (6)
match those of the original model in (2). In addition,
the model is guaranteed to be passive. Finally, the
method easily extends to a single model with multiple
inputs {u1 (x),u, (x),....} corresponding to multiple
mode shapes, {f1 (x),f, (x),....}.

As will be seen in the next section, k = 20 is
generally adequate for an accurate damping model.
This low order model can be inserted directly into a
system simulator such as SPICE or SABER. Note that
since the vector space spanned by {v,} does not depend

on the mean gap, ambient pressure or viscosity, the above
model is valid for any choice of those parameters.
Going one step further, we can model large signal
behavior by letting the mean gap vary with time,
hy = hy(t). Such an approach would be valid if 4, (#)

varies slowly compared to u(f) . In fact, from

numerical experiment, we find that replacing 4, in (2)
with hy(t) =hy +u(t) for even large u(z) gives good
results.

RESULTS

Figure 2 shows a schematic view of a
bulk-micromachined accelerometer [12] whose damping
effects are studied in this work. The perforated
proof-mass of the device is supported by four flexible
tethers. The surface area of proof-mass (under SQFD
effects) is 515x515 um®.  The plate thickness is 10.8 pm,
which is also the length L of the flow impedance Z
(Equation 3). The configuration of perforations on the
proof-mass is shown in Figure 3. The total number of
perforations is 36x36. The distance between hole
centers is 18 um, and the size of each hole is 2x2 um?.

The results of damping and spring components for a
515x515 pm’® perforated accelerometer are shown in
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Figure 4. The original system has 66564 nodes (i.e.,
66564x66564 system matrix), which is too large to be
compatible with system-level simulations. In previous
works, the damping and spring components can be
obtained by solving Equation 1 for different imposed
oscillation frequencies. However, the computational
time is more than two order of magnitude of the time for
solving a suitable reduced model that can be generated
by the approach presented in this work [11]. Our results
indicate that a reduced macromodel of order 20 (ie.,
20x20 system matrix) gives accurate and converged
results.

Figure 2 The schematic of an bulk-micromachined
accelerometer. The proof-mass is suspended by four
tethers. The dimension of the proof-mass is 515x515

Figure 3 The configuration of perforations on the
proof-mass of the accelerometer shown in Figure 2.
The size of the hole is 2x2 um’, and the pitch is 18 ym.
There are totally 36x36 holes evenly distributed on the
Droof-mass.
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Figure 4 Spring and damping components of an
order-20 macromodel for a 515x515um’ perforated
accelerometer. The gap is 1 um.

With the simulated spring and damping components
of the perforated SQFD effects, we formulated the
dynamic = mass-spring-damper  system  of  the
accelerometer, as shown in Figure 5. The mass and the
mechanical spring are the corresponding to first mode of
oscillation (i.e., out-of-plane motion). The air spring
and air damping effects in the schematic are functions of
oscillation frequency, as shown in Figure 4. The
simulated damping ratio of 5.6 at 10 KHz is very close to
the experimental result of about 5 [8,12], as shown in
Figure 6. Note that since the perforations effectively
released the pressure gradient inside the gap during the
oscillation of the proof-mass, the gas compression effect
is not obviously at 10 KHz (relatively low frequency).
Therefore, the spring effect is negligible in this case.
The extracted macromodels can be easily inserted into
circuit simulators [9] or system-level simulators such as
Saber or Simulink [13]. Figure 7 shows the schematic
of a Mass-Spring-SQFD model under Simulink
environment. The extracted SQFD macromodel is
described as a state-space model of the Simulink. The
Simulink transient simulation of the system under a step
input voltage is shown in Figure 8. The frequency of
the oscillation at the beginning of the curves is the
resonance frequency of the device. The figure shows
that for the reduced models whose orders are equal to or
greater than 20, the results are in good agreement with
FDM results.
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Z

Air Mechanical
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Figure 5 A Mass-spring-damper schematic of the
accelerometer shown in Figure 2. The “Air Spring”
and “Air Damping” are frequency-dependent and can be
obtained from Figure 4.
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Figure 6 Damping ratio of the accelerometer. The
mechanical spring constant is 4.75 N/m, and the mass is
1.52e-8 kg. The experimental damping ratio at 10 kHz is
about 5.

Modeling and Simulation of Microsystems 2002, (www.cr.org), ISBN 0-9708275-7-1.



Perforated_SQFD«
Space model
1 1
s s
. - — gap
Inertia Velocity Position
_ Initial iap
Spring
() < Mux
w —CD
Electrostatic force v

Figure 7 Schematic of mass-spring-SQFD model of an
accelerometer with electrostatic actuator. The extracted
SQFD macromodel is described as a state-space model
of the Simulink.
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Figure 8 Transient simulation result of the
accelerometer system shown in Figure 2. The applied
voltage is 0.5 volt. The ambient pressure is set to
0.001atm so that oscillation will be observed. The
curves of order 20 and 30 systems are identical

CONCLUSION

A new approach to extract frequency-dependent gas
damping models for perforated arbitrary geometries of
MEMS devices is demonstrated. The Arnoldi-based
algorithm is applied for creating a low-order model from
the transient FEM/FDM system matrices. The
frequency-dependant gas damping and spring effects can
be obtained using the low-order models without any
computationally intensive transient simulation for wide
frequency range. After constructing 3D solid models,
more than two order of magnitude reduction in
computational time has been demonstrated. Examples
of transient analysis and comparison to experimental
results are also provided.
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