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ABSTRACT

Recently, we have presented the development of a
complete predictive simulation capability for the e�ects
of general anisotropic nonuniform stress on dopant di�u-
sion in silicon [M. Laudon, N. N. Carlson, M. P. Masque-
lier, M. S. Daw, and W. Windl, Appl. Phys. Lett. 78,
201 (2001)]. As a by-product of these calculations, we
calculated a physical volume of 15 �A3 for electrons in
Si from �rst-principles which is the topic of the present
paper. It is argued that the physical electron volume
that we have calculated for the silicon solid can be con-
sidered to represent a lower boundary for the e�ective
size of semiconductor electrons that needs to be taken
into account in quantum transport simulations.
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1 INTRODUCTION

The silicon-based metal oxide semiconductor �eld ef-
fect transistor (MOSFET) is at the heart of today's
semiconductor industry. Because the switching speed
of a MOSFET increases linearly with shrinking dimen-
sions, the semiconductor industry has constantly im-
proved computer performance by scaling a more or less
unchanged device geometry. Despite the successful his-
tory of device miniaturization, scaling is reaching the
physical limits of traditional device materials. With the
reduction of gate lengths and the use of more exotic ma-
terials such as metal gates, to date negligible e�ects such
as dopant deactivation or the in
uence of stress on dif-
fusion become more important in determining the �nal
dopant pro�le and subsequent device performance.

Recently, we have presented the development of a
complete predictive simulation capability for the e�ects
of general anisotropic nonuniform stress on dopant di�u-
sion in silicon [1]. We derived the macroscopic-di�usion
equation from microscopic-transition state theory, cal-
culated the microscopic parameters from �rst principles,
and predicted the feature-scale stress based on stress
measurements in the relevant materials as a function
of temperature. We used the developed methodology,
implemented in a continuum solver, to investigate a ti-
tanium nitride (TiN) metal gate system.

As a by-product of these calculations, we calculated a
physical volume for electrons in Si from �rst-principles,
which is the topic of the present paper.

2 MULTISCALE MODELING

Simulation of front-end processing is becoming an
increasingly critical cost and time-saving component of
integrated-circuit technology development, provided it
is accurate enough. In addition, today's electronics are
so small that characterization of their material param-
eters is in many cases diÆcult and expensive. Thus,
simulation is often the only e�ective tool for exploring
the lateral and vertical doping pro�les of a modern de-
vice at the level of detail required for optimization.

Process simulation is being performed more and more
by multiscale modeling, using a hierarchy of tools. Ab
initio and molecular-dynamics codes generate insight
into the physics of mobility and reactions of atoms in
the silicon lattice. This information then serves as input
into higher-level modeling such as kinetic-lattice Monte
Carlo codes (to establish critical mechanisms where they
are not obvious) and traditional continuum codes, which
are used for production runs.

Such predictive and physical modeling is an extremely
important asset for advanced semiconductor develop-
ment. As an example, Motorola has aggressively built a
predictive-modeling group in the past few years, result-
ing in highly predictive tools such as MD-based implant
simulation with the REED (Rare Event Enhanced Do-
main) MD code [2] or ab initio-based di�usion simula-
tion [1], [3], [4]. In the following section, we summarize
a multiscale methodology that simulates di�usion under
the previously mentioned metal gate systems, which is
strongly in
uenced by stress e�ects and therefore needs
a combination of mechanical and traditional process-
modeling tools.

3 FORMATION VOLUME TENSORS

AND ELECTRON VOLUME

Isotropic di�usivities of defects and impurities are
usually expressed within an Arrhenius form, derived from
harmonic transition-state theory,D = D0 exp [�E0=(kT )].
Under stress, both the di�usion prefactor, D0, and the



activation energy, E0, can change according to the ap-
plied stress. If the stress is anisotropic, the isotropic
di�usion behavior, which is usually observed in cubic
crystals like silicon, is disturbed and a fully anisotropic
di�usion tensor needs to be employed. In a recent paper,
[5] the stress dependence of di�usivities in general crys-
tal lattices for fully anisotropic stress has been derived
and applied to boron di�usion in silicon [1].

Ab-initio calculations within the harmonic Vineyard
approach have shown that the di�usion prefactor D0

changes under typical stress values by not more then a
few tens of percent. [6] However, the changes observed
for the activation energy can easily change the overall
di�usivity by several orders of magnitude. Therefore,
the pressure dependence of the prefactor is usually ne-
glected, whereas the stress-dependence of the activation
energy in the form E(p) = E0 + pVc (in the isotropic
case) is considered.

Thus, Vc determines the stress dependence of the ac-
tivation energy. In the anisotropic case, the scalar vol-
ume changes to a volume tensor [5]. It can be calculated
from the volume di�erence between the system at the
saddle point con�guration and at the minimum-energy
valley con�guration, where the lattice of both has been
minimized at constant pressure zero [5], [7].

Since the potentially di�erent symmetries of saddle
point and valley con�guration make the \real" calcula-
tion in the fully anisotropic case a messy task, a separa-
tion of the overall di�usivity in a part depending solely
on the valley con�guration and one depending solely on
the saddle point is highly desirable. In order to achieve
this, \creation" volumes were recently introduced, which
are calculated by the tensor of volume di�erence of the
system at the valley or saddle point, respectively, and
a perfect silicon cell, where the lattice of both has been
minimized at constant pressure zero. [5], [7]

Many defects and impurities in Si prefer a charged
over a neutral state. A substitutional B atom, e.g., likes
to attract an electron from somewhere within the sili-
con crystal and have it help to satisfy the four bonds
it has to form with its silicon neighbors, which would
be a hard task with the three valence electrons a boron
atom comes naturally with. This extra charge, however,
makes the defect or impurity susceptible to interactions
with the local potential or, equivalently, dependent on
the Fermi level it experiences. This Fermi-level depen-
dence can be considerable and in general cannot be ne-
glected for di�usion [3]. Thus, if one wants to calculate
a correct creation volume for a defect in silicon, it needs
to be calculated for the correctly charged species like,
e.g., the BI+ boron-interstitial pair in the case of boron
di�usion. [3]

In our work on stress-mediate di�usion, a problem
arose when the calculated volumes for cells with dif-
ferent charge (i.e., number of electrons), but otherwise

identical atomic arrangement were found to be signi�-
cantly di�erent. As we will show, the volume di�erence
was nearly perfectly linear with the di�erence in the
number of electrons if large enough cells (� 64 atoms)
were employed. Therefore, we consider it to represent
a \physical volume" of electrons in silicon, since for ev-
ery electron taken out of the system, the overall volume
decreases by the same amount.

A change of cell volume with charge has been re-
ported before [8], but we could not �nd work where its
meaning or origin has been discussed. In case this dif-
ference is real and not an artifact of the calculation, the
question needs to be addressed if the reference silicon
system would as well need to carry charge or not, since
the choice of its charge changes the overall result signif-
icantly. Therefore, we will report in the following our
calculations of the physical electron volume, an attempt
of a preliminary interpretation, and relate it to other
observed or predicted aspects of the size of an electron.

4 AB-INITIO CALCULATIONS

Our calculations have been performed within the ge-
neralized-gradient approximation (GGA) using the ab-
initio total-energy molecular dynamics program VASP
(Vienna ab-initio simulation program) developed at the
Institut f�ur Materialphysik of the Universit�at Wien [9].
Ultrasoft pseudopotentials [10] with a default \medium"
cut-o� energy (150 eV in the case of plain silicon) and
k-point meshes equivalent to 23 in a 216-atom supercell
have been used for non-constant pressure calculations.
Wherever constant pressure calculations were employed,
the cuto� energy has been raised to the \high" setting
(180 eV in the case of silicon). For calculations with non-
neutral electron number, VASP adds a compensating
homogeneous background charge to the system.

5 AB-INITIO RESULTS

For a given cell size, we have found the volume change
with varying charge state to be the same within a few
percent error, no matter if the Si cell in question had a
defect or dopant in it or not and independent of the type
of the defect. In the following, we discuss our results for
the simplest system possible, perfect silicon supercells.

Figure 1 shows the volume of 64-atom silicon super-
cells with a changing number of electrons. �N = 0
in the �gure corresponds to a neutral system, which
has 64 � 4 = 256 valence electrons, and the dots rep-
resent the ab-initio results. We �nd the cell volume to
depend nearly perfectly linearly on the electron num-
ber. A quadratic �t determines the slope of the curve
and the deviation from linearity, where the linear coeÆ-
cient gives the change in system volume when adding or
subtracting electrons and hence represents the physical
electron volume. From the least-squares result in the



Figure 1: Volume of a sixty-four-atom silicon cell with
varying number of electrons (dots). �N = 0 corre-
sponds to a neutral system with 64 � 4 = 256 valence
electrons. The solid line is a quadratic �t to the cal-
culated points with parameters as shown in the boxed
equation (in �A3).

�gure, it can be seen that we �t the physical volume of
an electron in this system to be 14.7 �A3.

This result is surprising, since it means that the phys-
ical electron volume is approximately three quarters of
the volume V0 of a complete Si atom in the solid.

Benchmark calculations for other cell sizes give sim-
ilar results. Even for very small system sizes like eight-
atom cells, where the addition or removal of one atom
changes the (periodic) system considerably, we still �nd
a reasonably small deviation from linearity and a very
similar physical electron volume of 15.8 �A3. These re-
sults are shown in Fig. 2. Overall, we �nd a consistent
physical electron volume of Ve ' 15 �A3.

6 DISCUSSION

A set of relations between the di�erent thermody-
namic variables can be derived from the Second Law of
thermodynamics known as the Maxwell relations. One
of these equations relates the change of the system vol-
ume V with particle numberN to the change in chemical
potential � with pressure p,

@V

@N
=

@�

@p
: (1)

Equating the chemical potential to the Fermi level of
the system and writing its pressure dependence in lin-
ear form, Eq. (1) gives a new meaning to our physical
electron volume, since it also determines the pressure
dependence of the Fermi energy EF ,

EF (p) = EF (0) + Vep: (2)

This second interpretation of the physical electron
volume gives a convenient method to examine if our re-
sult is real: First of all, a calculation of the pressure

Figure 2: Volume of an eight-atom silicon cell with vary-
ing number of electrons (dots). �N = 0 corresponds to
a neutral system with 8� 4 = 32 valence electrons. The
solid line is a quadratic �t to the calculated points with
parameters as shown in the boxed equation (in �A3).

dependence of valence and conduction band for neutral
perfect Si without possible charge artifacts, where the
Fermi level is exactly at mid gap, examines the consis-
tency of the calculations. Secondly, measurements for
the change in the band gap with pressure exist for a
number of semiconductors, a quantity that is usually
known as deformation potential [11]. Although the op-
tical measurements of deformation potentials measure
them relative { for a transition between bands { and
not absolute, which is what we would need to determine
the physical electron volume, the results are excellently
suited to benchmark the quality of the theory.

Figure 3 shows valence and conduction band edge for
an 8-atom Si supercell as a function of pressure. The
cell size has been equilibrated for each pressure value in
a constant-pressure minimization, and the band struc-
ture values have been determined for the relaxed system.
The valence band maximum is at the � point of the Si
Brillouin zone, and the conduction band minimum lies
along the (100) direction of the Brillouin zone of the
primitive cell. Since this is a perfect intrinsic Si system,
the Fermi energy or chemical potential is determined
as the midpoint between valence and conduction band
edge.

A linear �t of the calculated values of the Fermi en-
ergy as a function of pressure �nds Ve from Eq. (2) to be
14.9 �A3, in excellent agreement with our previous value,
which was obtained from the charged-cell volumes.

The experimental value for the hydrostatic deforma-
tion potential of the silicon band gap is �14 meV/GPa
[12]. Fitting the di�erence between calculated valence
and conduction band edge in Fig. 3, we �nd a theoret-
ical value for the corresponding deformation potential
of �17 meV/GPa, in good agreement (20%) with ex-
periment. Earlier work by Alouani and Wills found for



Figure 3: Fermi level (EF ), valence (Ev) and conduction
(Ec) band edge energies of a 8-atom Si supercell, struc-
turally minimized at di�erent pressures in constant-
pressure ab-initio relaxations. Dots are calculation re-
sults, lines are linear �ts.

the pressure dependence of the direct gaps in Ge and
GaAs an agreement between density-functional calcu-
lation and experiment within 4% and 9%, respectively
[13]. Therefore, we estimate that the error in our calcu-
lated physical electron volume should not exceed 20%,
or 3 �A3, leaving its size in close proximity to the size of
the Si atom in the solid state.

7 CONCLUSIONS

Many di�erent sizes have been attributed to the elec-
tron in the past, dependent on its environment and the
speci�c question to be addressed. Particle collision ex-
periments put an upper limit of 10�17 m on the size of
the free electron [14].

While free electrons are tiny as compared to atoms,
their interaction with the other particles lets them in-

uence the size of a solid strongly. This can be seen,
e.g., from the ionic radius of silicon, which is 0.44 �A for
a 4+ charged ion as compared to a covalent radius of
1.17 �A for a neutral Si atom. The absence of the four
valence electrons lets the volume per atom collapse to
about 5% of the original volume, which assigns a much
larger physical volume (de�ned in the above sense, i.e.,
volume change of the solid when removing one electron
from the system) to the single electron. At the current
state of our discussions, we would sort our physical elec-
tron volume into this class.

For quantum transport simulations, the important
question is at what dimensions electrons will start to dis-
play signs of con�nement e�ects, which give rise to quan-
tum corrections to a classical treatment of transport
[15]. Recently, the e�ective size of the electron has been
suggested to be given by �F =� for a two-dimensional
electron gas, where �F is the Fermi wave length, or by

p
3=8�D in a three-dimensional non-degenerate semi-

conductor, where �D is the thermal De Broglie wave-
length [16]. From this approach, an electron size of
about 50 �A has been estimated, which comes close to
the physical size that we have calculated in the present
work. Therefore, we speculate that our physical elec-
tron volume for the silicon solid is at least similar to
the e�ective size that needs to be considered in quan-
tum simulations and at a minimum represents the lower
boundary for the value of the e�ective size.
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