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ABSTRACT

As MOSFETs are scaled into sub 100 nm (decanano)
dimensions, quantum mechanical confinement and
tunnelling start to dramatically affect their characteristics.
In this paper we describe the introduction of quantum
corrections within a 3D drift diffusion simulation
framework using quantum potentials. We compare the
density gradient (DG) and the effective potential (EP)
approaches in term of accuracy and computational
efficiency. Their application is illustrated with examples of
3D statistical simulations of intrinsic fluctuation effects in
decanano MOSFETs. We also speculate about the
capability of the DG formalism to handle source-to-drain
tunnelling in sub 10 nm (nano) MOSFETS.

Keywords: Numerical simulations, quantum corrections,
effective potential, MOSFETs, intrinsic fluctuations

1 INTRODUCTION

MOSFETs scaled down to 15nm gate lengths have been
successfully demonstrated [1]. The scaling below these
dimensions will require the introduction of new device
architectures among which double gate MOSFETs are the
most promising candidates [2]. The combination of thin
gate oxides and heavy doping in the conventional
MOSFETs, and the thin silicon body of the double-gate
structures, will result in substantial quantum mechanical
(QM) threshold voltage shift and transconductance
degradation [3]. Below 10 nm gate-lengths direct source-to-
drain tunnelling will rapidly became one of the major
limiting factors for scaling [4]. Computationally efficient
methods to include QM effects are required for the purpose
of practical Computer Aided Design of this generation of
devices. First order quantum corrections based on density
gradients (DG) have already been introduced in 2-D [5] and
3-D [6] drift-diffusion simulations. Recently a new
Effective Potential (EP) approach for introducing quantum
corrections in classical and semi-classical simulations has
been proposed [7] and demonstrated in Monte Carlo
MOSFET simulations [8]. In this paper we discuss the
implementation of these two quantum correction techniques
in a 3-D drift diffusion simulator and compare their

accuracy and efficiency. We start with the calibration of the
two approaches in respect of a more sophisticated quantum
simulator [2]. Then we compare their influence on 3-D
‘atomistic’ statistical simulations of intrinsic fluctuations,
introduced by random discrete dopants, in decanano
MOSFETs with conventional architecture. Finally we
speculate on the possibility to emulate, at semi-quantitative
levels, the source-to-drain tunnelling in sub 10 nm double
gate MOSFETs using the DG formalism.

2 QUANTUM POTENTIALS

We are motivated by the need to introduce quantum
corrections in our 3D drift-diffusion ‘atomistic’ simulator
widely used to investigate the intrinsic fluctuations in
decanano MOSFETs which are introduced by the
discreteness of charge and atomicity of matter [6, 9]. The
investigation of intrinsic fluctuation effects involves
statistical 3-D simulations of large samples of
macroscopically identical but microscopically different
devices. Therefore the computational efficiency of the
quantum correction approach is of great importance and the
use of quantum potentials becomes an attractive option.

2.1 The Density Gradient approach

The density gradient approach may be derived from the
one particle Wigner function [10]:
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Quantum effects are included through the inherently
non-local driving potential in the third term on the left-hand
side. Expanding to first order in h, so that only the first non-

local quantum term is considered, has been shown to be
sufficiently accurate to model non-equilibrium quantum
transport and also for the inclusion of tunnelling
phenomena in particle based Monte Carlo simulators [11].
The additional, non-classical, quantum correction term may
be viewed as a modification to the classical potential and



acts like an additional quantum force term in the particle
simulations, similar in spirit to the Bohm interpretation.

The density gradient approximation maybe derived in a
manner similar to that for deriving the drift diffusion
approximation from the Boltzmann Transport Equation and
results in a quantum potential correction term in the
standard drift-diffusion flux [5].

Fn = nµn∇ ψ − Dn∇ n + 2µ∇ bn
∇ 2 n
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where b qmn n= h /( )*12 , and all other symbols have their
usual meaning. To avoid the discretisation of fourth order
derivatives in (1) in multidimensional numerical
simulations a generalised electron quasi-Fermi potential φn

is introduced as follows:

Fn = nµn∇ φn (3)

Thus the unipolar drift-diffusion system of equations with
QM corrections, which in many cases is sufficient for
MOSFET simulations, becomes:

∇ ⋅ ε∇ ψ( ) = −q p− n + ND
+ − NA
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∇ ⋅ nµn∇ φn( ) = 0 (6)

The system of equations (4) – (6) is solved self-consistently
using standard techniques.

2.2 The Effective Potential approach

An alternative approach to the DG formalism for
including first order quantum effects is the recently
advanced EP approach [7]. In this case the natural non-zero
size of an electronic wave-packet in the quantised system is
used to construct an effective potential. The carriers are
considered to be associated with a minimum dispersion
Gaussian wavepacket, which is in turn convolved with the
classical conduction band profile VClassical (obtained from the
solution of Poisson’s equation) to obtain an effective
potential Veff given by:

V V G a deff Classical= +( ) ( )∫ x y y y, 0 (1)

where G is a Gaussian with standard deviation a0.
In the implementation of the EP approach we use the

Gummel algorithm for solving the semiconductor equations
in the drift diffusion approximation. The scenario resembles

the standard procedure used to self-consistently solve the
Poisson and the Schrödinger equations, using a self-
adjusting damping scheme [12] for the potential.

3 RESULTS

3.1 Calibration

We have carefully calibrated both the EP and DG
approaches against the results of a 1-D Poisson-Schrödinger
solver [2]. Although Poisson-Schrödinger simulations are
more sophisticated they are not yet practical for 3-D device
simulations. Fig. 1 shows the quantum mechanical
threshold voltage shift for DG and EP as a function of
substrate doping compared with the results of Jallepalli.
Fig. 2 shows typical carrier concentration profiles obtained
from the 1-D simulations. All show a peak in the
concentration away from the Si/SiO2 interface, although the
effective potential produces a sharper drop-off at the
Si/SiO2 interface.
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Fig. 1. Threshold voltage shift due to quantum effects
versus substrate doping. Results for Density Gradient and
Effective Potential are compared to those obtained from

Poisson Schrödinger.
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Fig. 2. Electron carrier concentration as a function of
distance from the interface, for substrate doping of
5×1017cm-3. All have the same net sheet density.
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Fig. 3. ID-VG characteristic obtained from both classical and
quantum simulators for a 30nm×30nm n-MOSFET, with

VD=0.01V and a substrate doping of 5×1018cm-3.

Fig. 3, shows an ID-VG characteristic for a 30nm×30nm
n-MOSFET obtained from our 3-D quantum simulator.
This demonstrates the threshold voltage shift between the
classical and the quantum simulations.

3.2 3-D Atomistic Simulations

Here we compare the impact of the DG and EP quantum
corrections on the threshold voltage fluctuations in
decanano MOSFETS. Fig. 4, shows a typical equi-
concentration contour for a simulated atomistic MOSFET
using the EP method.

Simulating 200 atomistic devices we have investigated
threshold voltage (Fig. 5) and standard deviation (Fig. 6) at
different channel lengths. The EP simulations result in
similar average threshold voltages and standard deviations
compared to DG.

Fig. 4. An equi-concentration contour for a 30×50nm
atomistic MOSFET at threshold obtained using our

effective potential simulator. Also shown are the individual
dopant positions throughout the structure.
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Fig. 5. Average threshold voltage for 50 nm wide atomistic
MOSFETs with different channel length, 1.2 nm gate oxide

and channel doping 5×1018 cm-3. Comparison between
classical, density gradient and effective potential

simulations
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Fig. 6. σVT for atomistic MOSFETs with different channel
length (same parameters as in Fig. 5) Comparison between

classical, DG and EP simulations

3.3 Source-to-Drain Tunnelling

It still remains unclear to what extent the
approximations involved in deriving the DG approach
remove its ability to model the direct source-to-drain
tunnelling expected in nanometre channel length
MOSFETs. In search of a qualitative answer to this
question we simulate a set of double gate MOSFETs with
generic structure illustrated in Fig 7. The subthreshold slope
in the DG simulations (Fig. 8) degrades significantly as the
channel length is decreased, while in the classical
simulations the subthreshold slope remains nearly constant
with channel length. The degradation in the subthreshold
slope in the DG simulations is consistent with the more
elaborate quantum mechanical simulations performed by
others [13]. These observations provide an indication that
source-to-drain tunnelling is included, to some extent, in
the DG simulations.
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Fig. 7: Schematic representation of the double-gate
MOSFET structure considered in this work.
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Fig. 8: ID-VG characteristics for a double gate structure,
with gate lengths ranging from 30nm down to 6nm,

obtained from our classical and density gradient
simulations. VD=0.01V and VG is applied to both top and

bottom gate contacts.

4 CONCLUSIONS

The Density Gradient and Effective Potential methods
provide efficient means for incorporating quantum
corrections in multi dimensional device simulations. Both
methods agree well with the available data from Poisson-
Schrödinger simulations, although there is a better
agreement between Density Gradient and Poisson-
Schrödinger calculations in respect of the carrier densities.
This, however, appears to have little discernable effect on
threshold voltage and current characteristics. Implemented
in large scale 3-D statistical ‘atomistic’ simulations they
produce very similar results for the threshold voltage, the
threshold voltage lowering and the threshold voltage
standard deviation in decanano MOSFETs. The Density
Gradient approach implemented in the simulation of
sub 10 nm double gate MOSFETs shows behaviour
qualitatively consistent with source-to-drain tunnelling.
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