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ABSTRACT

In this paper, we describe a method of simulating elec-
tron transport in semiconductor devices that operate in the
quantum regime. Specifically, devices formed in which the
electrons are confined to two dimensions (2D) and trans-
port is ballistic. Modeling such structures using a finite
difference approach, we describe how the conductance can
be calculated using a numerically stabilized variant of the
transfer matrix approach derived from the 2D Schrödinger
equation. Examining the example of a quantum point con-
tact, we also describe how this method can be efficiently
coupled to a Poisson solver to allow self-consistency to be
achieved.

Keywords: quantum transport, heterostructures, numerical
methods, finite difference.

1. INTRODUCTION

The Semiconductor Industry Association (SIA) projects
that by the end of 2009 devices will employ 0.05 µm gate
lengths and have oxide thickness of less than 1.5 nm.
Groups from Toshiba and Lucent Bell Labs have already
fabricated n-channel MOSFETs with effective gate lengths
below 25 nm [1], showing that these feature sizes are fea-
sible. In this sub-micron regime, electron transport is ex-
pected to be dominated by quantum effects.  In MOSFETs
and GaAs/GaAlAs heterostructures, the situation is com-
monly one in which the electrons are already confined
along one of the dimensions, forming a subband struc-
ture[2]. If the electrons are free to move along the two re-
maining directions, they constitute a 2 dimensional elec-
tron gas (2DEG). Moreover, if the dimensions of the de-
vice are significantly smaller than the mean free path and
the coherence length, then transport should be ballistic, ie.
the primary source of scattering is from the boundaries[2].
Under such conditions, interference effects due to the
wave-like nature of the electrons become paramount and a
fully quantum mechanical treatment is required for an ac-
curate simulation of such a device. In this paper, we de-
scribe a numerical method for doing such calculations
based on a stabilized variation of the transfer-matrix
method. We also show this  2D Schrödinger solver can be
efficiently coupled to a Poisson solver to allow self-
consistency to be achieved.

2. CALCULATING THE CONDUCTANCE

Figure 1: Schematic for the quantum device we consider in
this paper, a quantum point contact. The dark regions repre-
sent places where the potential, Vi,j, is high. Importantly, the
lattice spacing, a, is in reality much smaller than it is illus-
trated here.

To illustrate the method, we simulate one of the sim-
plest quantum devices, a quantum point contact (QPC). As
shown schematically in Fig. 1, our QPC is constituted by
a narrowing or bottleneck occurring inside a quantum wire.
We assume that this device is constructed within a
GaAs/GaAlAs heterostructure, so that the effective mass is
0.067 and the electrons are confined in a 2DEG, so that
the z-direction need not be considered.

We perform our simulations on a square finite-
difference lattice with lattice constant, a. Position can thus
be specified by integers: x=ia and y=ja. Keeping only the
lowest order terms in the approximations of the deriva-
tives, the 2D Schrödinger equation becomes
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Vi,j represents the potential at site i,j and E is the energy.
Since we are interested in current flow, the typical situa-
tion which we consider is one in which the device is en-
closed inside an ideal quantum wire, which extends outward
to ±∞ along the x-axis. Along the top and bottom bounda-
ries we use Dirichlet boundary conditions, so for a wire M

 

y  

x 
h  

w  

c  

j=0

j=M+1

i=1 i=N

a

 

y  

x 
h  

w  

c  

j=0

j=M+1

i=1 i=N

a



lattice spacings high, 
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Given this, the wavefunction along a particular slice i on
the x-axis can be specified by a M-dimensional vector and
equation (1) can be rewritten as a matrix equation:

iiii Ett ψψψψ rrrr =−− −+ 110iH . (3)

Combining this with the trivial equation, ii ψψ rr = , one can

derive a transfer-matrix equation that relates adjacent
slices:
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Since the quantum wire acts as a waveguide, the ac-
tual current is carried by the propagating modes of the
wire. Thus, we begin the calculation by solving the eigen-
value problem for the transfer-matrix on the first slice:
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The eigenvectors  of  (5)   have the form
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and given there are q propagating wave modes (|λ | =1) and
M-q evanescent modes (|λ | ≠1) the corresponding eigen-
values can be expressed as
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The ± symbol refers to the fact that the modes actually
come in pairs, those that travel to the right (+) and those
to the left (−). For the transmission problem, it is useful
to collect these together in a 2M × 2M matrix
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To calculate the transmission through a device, the modes
are injected from the left side only with unit amplitude.
For a structure N slices long, one must thus solve the
transfer matrix problem:
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where t is a matrix of transmission amplitudes of waves
exiting from the right part of the structure, and r is the
matrix of amplitudes of waves reflected back towards the
left. Given t, one calculate the conductance, G, using the
Landauer-Buttiker formula[2]:
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where tn,m represents the transmission amplitude of mode n
to mode m and the summation is only over propagating
modes. The v’s  are the mode velocities, which can be
obtained by taking the expectation value of the current
operator.

Unfortunately, equation (9) in its current form is
made numerically unstable by the exponentially growing
and decaying contributions of the evanescent modes that
accumulate when the product of transfer matrices is taken.
Usuki et al.[3] overcame this difficulty be rewriting the
transfer matrix problem in terms of an iterative scheme.
Rather than using the simple relationship given by equa-
tion (4), slices i and i+1 can be related by:
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The iteration is started by the condition C0
1=I and C0

2=0,
which starts the modes off with unit amplitude. At the
end, t obeys the relationship:
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The numerical stability of the Usuki et al. method in large
part stems from the fact that the iteration implied by equa-
tion (11) involves products of matrices with inverted ma-
trices. Taking such products tends to cancel out most of
the troublesome exponential factors.  It should be noted
that the Usuki et al. method is really just a variation on
the “cascading scattering matrix” method developed by
Inkson and Ko [4].

3. ACHIEVING SELF-CONSISTENCY

To make the calculation self-consistent, we need to be
able to calculate the electron density, which is obtained by
reconstructing the electron wave functions. Usuki et al.
outlined a method for doing this starting from the left and
working back to the end of the structure. Unfortunately, it
entails performing a calculation similar to that for obtain-
ing the conductance, but for every single slice. As a result,
while the time it takes to calculate G goes as N, the time
to reconstruct the wave function instead goes as N!, which
makes it very time consuming. Since self-consistency re-
quires the density to be recalculated numerous times, in-
cluding it thus becomes impractical for most calculations.
We however have found a simple way to make the recon-
struction far more efficient. Instead of going from left to
right, one starts at the end of the structure and works
backword. Manipulating Usuki et al.’s equations, it can be
shown that for the final slice :
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Note here that Nø  is a matrix, the columns of which rep-

resent the separate contributions of the individual  modes
to the total wave function on slice N.  Going towards the
left, one then does the iteration:

121 ++= iiii øPPø . (14)

The P’s here are the same ones obtained during the G cal-
culation and so are recalled from memory rather than recal-
culated. The density at site i,j, given there are q propagat-
ing modes becomes
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Obtaining n(x,y) in this modifi ed way takes about the
same amount of time as the original G calculation and can
be orders of magnitude faster than Usuki et al.’s technique
depending on the size of the structure.

Figure 2: Illustration of the situation simulated- waves inci-
dent from the left (I) that are reflected (R) and transmitted (T).
The dashed lines are where the boundary conditions of equa-
tion (16) are imposed.

Before an actual self-consistent calculation, one must
put appropriate boundary conditions on n(x,y). For this,
we assume Neuman boundary conditions on the ends:
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This assumption holds if the region of interest, ie. the
device, is far enough from the ends that the reflected waves
do not interfere with the boundaries. While only strictly
true when the transmitted and reflected waves are subjected
to damping, this assumption is sufficiently accurate in
general to allow a convergent solution to Poisson’s equa-
tion, and has been used previously in calculations per-
formed in similar quantum wire [5]. To stabilize the calcu-
lation during the iteration to solve Poisson’s equation, we
follow previous work [5-7] and fix one dimensional den-
sity at the entrance and exit slices, and allow the Fermi
energy to adjust itself in order to keep the number of
propagating modes constant. To determine the new ad-
justed Fermi level, we solve [5-7] :
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where N1D  is the 1D density at the quantum wire entrance
to the device and El is the energy level of the lth  mode as
calculated from the Schrödinger equation.

Figure 3: A cross-section along the x-direction of the electron
density n(r),  the ionized impurity density neq, and the net

density ρ(r).

The total self-consistent potential is a combination
of the Hartree, exchange and the correlation potentials. The
formulation for the exchange and the correlation potential
can be found in Ref. [5]. The Hartree potential is calculated
via an iterative Poisson solver (for programming simplic-
ity, we used simultaneous over-relaxation, though more
sophisticated solving methods could have been employed).
The Poisson solver solves the usual equation

( ) ( )rr ρ
ε

φ e−=∇ 2 (18)

where ρ, the density, is given by

( ) ( )yxnneq ,−=rρ
. (19)

Here, neq is the density of positively ionized donors in the
structure, which is taken to be equal in magnitude to the
average electron density of the entire structure so that the
system is charge neutral. As shown in Fig. 3, what ρ ends
up representing are the fluctuations in the density. The
Poisson equation is solved after every wave function den-
sity calculation until we reach two levels of convergence,
namely, the Poisson and the Schrödinger solutions both
need to converge for the system to have full self-
consistency.

4. RESULTS

For our simulation, we use  h=100 nm, c=20 nm
and w= 20 nm for the constriction (refer to Fig. 1 for the
meaning of these parameters). The Fermi energy assumed
was 18.84 meV, which gives rise to 5 propagating modes
for the given dimensions in the wire itself, while the QPC
allows only two propagating modes. We begin by solving
Schrödinger’s equation assuming the hard-wall boundaries
shown in Fig. 1 and neglecting the self-consistent solution
for the potential. The resulting electron density for this
case is shown in Fig. 4(a). Note that two collimated
beams exit the QPC at distinct angles. These correspond
to the two propagating modes which are diffracted by the
QPC. This diffraction, or electron beam collimation, a
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byproduct of the electron momentum in the y-direction
being quantized in the constriction which thus defining the
exit angles for the electron waves, constitutes the primary
effect that quantum mechanics produces in this system.   

Figure 4: Density plots for (a) a bare hardwall potential and
(b) a calculation with full self-consistency.

We now consider results with self-consistency. Since
the net self-consistent potential is negative (mainly due to
the inclusion of the correlation energy as part of the calcu-
lation), the tendency is for the density in the structure to
increase, giving rise to more propagating modes. However,
since we constrain the number of modes and the 1D den-
sity to be constant, we must adjust the local Fermi energy
after each iteration of the Schrödinger equation. Once the
iteration has converged, the Fermi energy in the device is
now 5.46 meV. The new Fermi energy is lower than the
original reference level since the self-consistency has re-
sulted in a lower potential inside the wire. A similar result
was found by Wang and Berggren[7].  The electron density
with the self-consistency included is shown in Fig. 4(b). It
differs from Fig. 4(a) only in minor details. This result is
not particularly surprising, since non-self-consistent mod-
els have been able to well describe such structures[2].  

Fig. 5(a) shows the self-consistent potential after a
single iteration while Fig. 5(b) shows it for the case where
convergence has been achieved. The two are quite similar.
Superimposed are Bohm trajectories for the electrons,
which are determined by a velocity field generated by the
wavefunction solutions of the Schrödinger equation[8].
Adopting Bohm’s point of view, one retains the idea that
electrons act as particles rather than as waves, but that the
quantum mechanics effects their motion

Writing 
h

Si

Re=ψ , the corresponding velocity field is
[8]:
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As shown in Fig. 5, the Bohm trajectories reflect the
dominant quantum effect, which is the diffraction.

Figure 5: Potentials for (a) the first iteration of the self-
consistent loop and (b) the final iteration. The lines represent
Bohm trajectories.

To conclude, we have described a method of simulat-
ing ballistic nanostructures that includes self-consistency.
In open structures such as the QPC shown here, this self-
consistency is relatively easy to achieve. More difficult are
situations where quasi-bound states are involved, such as
in quantum dots, since the density changes quite rapidly.
Generally, one must heavily damp the iteration process to
get convergence  in that situation.

REFERENCES

[1] M. Ono, M. Saito, T. Yoshitomi, C. Fiegna, T.
Ohguro and H. Iwai, IEEE Trans. Electron Devices 42,
1822, (1995).

[2]D.K. Ferry and S.M. Goodnick, in Transport in
Nanostructures, Ed. by K. Board and D. R. J. Owen,
Swansea UK (Cambridge Press, 1997).

[3] T. Usuki, M. Saito, M. Takatsu, R.A. Kiehl, and
N. Yokoyama, Phys. Rev. B, 52, 8244 (1995).

[4] D.Y.K. Ko and J.C. Inkson, Phys. Rev. B, 38,
9945 (1988).

[5] Y. Wang, J. Wang, H. Guo and E. Zaremba,
Phys. Rev. B, 52, 2738 (1995).

 [6]  Y. Sun and G. Kirczenow, Phys. Rev. B, 47,
4413 (1993).

[7]C. Wang and K.F. Berggren, Phys. Rev. B, 54,
14257 (1996).

[8] D. Bohm and B.J. Hiley, The Undivided Uni-
verse, (Routledge,  1993).


