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ABSTRACT

The Wigner-function approach to quantum trans-
port in mesoscopic electron devices is presented. The
concept of Wigner paths allows the formulation of a
Monte Carlo simulation which is quantum mechanically
rigorous and yet very simular to the one used in semi-
classical transport theory. The effect of a potential pro-
file is separated into a term acting as a classical force in
the particle orbits and a scattering integral that contains
only quantum effects. Phonon scattering is included in
the paths in a way that takes automatically into ac-
counts all quantum effects, such as intracollisional field
effect and collisional broadening.
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1 INTRODUCTION

The Wigner function (WF) approach[1]-[4] seems
to be most appropriate to deal with quantum electron
transport in mesoscopic systems. It explicitely refers
to variables defined in an (r,p) phase space. Further-
more when the phase coherence length of the electrons
tends to vanish, the WF reduces to the classical distri-
bution function, while when the electron wavefunction
extends to a finite size, the corresponding dynamics of
the WF can be interpreted as the motion of representa-
tive points in phase space[5]. Such motion is identical
to the motion of classical perticles as long as the po-
tential does not change more than quadratically in the
region occupied by the wavefunction. Thus in many
cases the dynamics of each single electron in terms of
the WF can be interpreted as an ensemble of classical
particles. Such situations allows to understand why the
Boltzmann equation (BE), based on semiclassical ap-
proximations, works often so well even for mesoscopic
systems, and to identify the special situations where
quantum effects are relevant. Wigner paths (WP’s) in
the above mentioned phase space can be defined that
provide a pictorial representation of the quantum evo-
lution of the system of interest and constitute a useful
tool for the development of Monte Carlo (MC) simu-
lative algorithms[5]-[7], in strict analogy with the ones
used in semiclassical transport theory to solve the BE.

2 WIGNER FUNCTION

For an electron described by the vawefunction ¥(r, t)
the WF is defined as the Weyl-Wigner transform of ¥:

fuw(r,p,1)
:/e_%p'r’lll(r-l-r’/%t)lll*(r—r’/2,t)dr’ (1)

where the bar indicates ensemble average (for simplicity,
in what follows the bar will be understood).
The normalization has been chosen in such a way

that .
W//fw(ﬂp)dp(h‘ =1. (2)

Several properties of the WF makes it analogous to
the classical distribution function, even though it must
be kept in mind that it cannot be interpreted as a prob-
ability density, as it may assume negative values.

It is immediate to verify from the definition (1) that
integration over momentum yields the particle density in
real space and, similarly, integration over r leads to the
particle density in momentum space. Furthermore, the
expectation value of any operator which is function of
both position and momentum, is obtained by integrating
over position and momentum the product of the WF
times the Weyl-Wigner transform of the operator itself

[6]-
3 EFFECT OF A POTENTIAL V(r)

We shall now consider the dynamical equation of the
WF for an electron subject to the hamiltonian:
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V2+V(r)=Ho+V(r) (3)
where we assume a single, spherical, and parabolic band
with effective mass m, and leave the treatment of the
electron-phonon interaction to the next section. V(r)
is a general potential applied to the electron; it can be
due to a structure potential modified by an applied field
and, possibly, by the self-consistent field described by
Poisson equation.

Performing the time derivative of Eq.(1) and using
Schrédinger equation, after strightforward calculations[6]



we get
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where the transfer function V,, is defined by
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For potentials up to quadratic, the r.h.s. of Eq.(4) can
be written has —F - V, f,, where F = —VV (r). There-
fore, the WF of electrons in presence of potential up
to quadratic evolves as an ensemble of classical parti-
cles: each point follows a classical path in Wigner phase-
space.

We can move a step further in the treatment of the
scattering by the potential profile separating the effect of
the classical force from quantum effects. To this purpose
let us define

Tarr) =V (25 ) -9V (+5)

With this separation, the dynamical equation for the
WF becomes

1 i 1
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where F = —VV (r) is the classical force, and V, (7, p)
is defined as in Eq.(5) with V in place of V.

The Lh.s. of Eq.(6) is identical to the Liouvillian of the
BE, while its r.h.s. describes quantum effects in the form
of a collision integral due to a sort of quantum potential.
A similar approach was introduces also by Lozovik and
Filinov][8].

For the case of an electron interacting with an infinite
potential barrier, a new equation has been derived by
the authors [5], to be used, in place of Eq.(4), in the
region confined by the potential barrier.

4 PHONON INTERACTION

If the system of the electron and phonon gas is con-
sidered, a generalized WF can be defined that includes
the phonon states in the density matrix p(¢)[9]:

fw (rapa {nq}a{ng}’t)
= /dr’ef%p'r’<7‘ + %:{”q}

where ng is the occupation number of the phonon mode
q. In order to recover the original electron WF, a trace
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over the pnonon Sstateés must b€ periormed. AS long
as only electron variables are considered, a close equa-
tion for the WF can be easily obtained. On the con-
trary, when phonon variables are added, the trace over
phonons of the resulting equation does not lead to a close
equation for the electron WF, since the trace operation
does not commute with the electron-phonon interaction
Hamiltonian. The usual hierarchy of equations would
be obtained [10]. In the present scheme, the equation
is perturbatively solved for the generalized WF and the
trace over the phonons is performed not on the equation
itself, but on the obtained solution. Let us consider the
Hamiltonian of the system as given by

H=Hy+V(r)+Vir)+H, + Hp, (8)

where V¢(r) = —eE-r, being E a constant and uniform
electric field, and
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are, respectively, the free electron term (with m electron
effective mass), the Hamiltonian for the free phonon sys-
tem and the electron-phonon interaction term. In the
above expressions bg and bl, are the annihilation and
creation operators for the phonon mode g, wgq is the fre-
quency of the phonon mode g, and F(q) is a function
depending on the type of phonon scattering analyzed.
Using the Hamiltonian given in Eq.(8) in place of the
one given in Eq.(3), the r.h.s. of Eq.(6) can be written
as the sum of five terms. Developing the calculations
(the full derivation is given in Ref.[6]) leads to
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where

(10)

e({nq}) = anhwq (11)
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is the energy of the phonon state {n,}, and
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ql
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is the contribution of the electron-phonon interaction.
Each term on the r.h.s of Eq.(12) represents a phonon
interaction event (vertex) that changes only one set of
phonon coordinates, increasing or decreasing the phonon
occupation number of mode ¢’ by one unity and chang-
ing the electron momentum by ith’.

Before performing the time integration, it is useful
to introduce the so called quantum self-scattering [11].
Let us define

fuw (ryp,t) = ) £, (r,p, 1), (13)

performing the derivative with respect to time we get

9
ot

Substituting Eq.(14) into Eq.(10) and using Eq.(13) leads
to

fw — _Iwefr(tfto)fw + efr(tfto) %fw . (14)
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+Tfw (r,p, {ng}, {n,},1) , (15)

where the introduction of the exponential factor brings
about an additional interaction mechanism, with a con-
stant coupling I

5 INTEGRAL EQUATION

The L.h.s. of Eq.(15) has the same form as the clas-
sical BE. Thus path variables can be used in analogy
with the Chambers formulation of transport. Then, in-
tegrating over time, one obtains
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where (O (r,p,t; s) and p{% (v, p, t; s) are position and
momentum at time s of a classical particle that at time ¢
is in 7 with momentum p. The upper (0) indicates that
no scattering occurs between s and t. t, represents the
time of the initial condition, when the WF is supposed
to be known.

6 WIGNER PATHS AND MONTE
CARLO SIMULATION

Eq.(16) may be iteratively substituted into itself giv-
ing a Neumann expansion that describes the evolution
of the WF as a sum of contributions containing increas-
ing powers of the interaction coupling, evaluated at suc-
cessive times t;. Recalling that, from the definition,
fu(r,p,to) = fu(r,p,to), the inclusion of the quantum
self-scattering implies that between one scattering and
the next one a factor e '!i~%) has to be added.

In previous works [5]-[7] the authors have shown that
for free electrons and for potential up to quadratic, a
single d-like contribution of the WF keeps its value and
its d-character evolving in time along the classical path.
Eq.(16) and its iterative expansion show that, taking
into account phonon scattering, for each single scatter-
ing time ¢’ and a single phonon mode ¢’ a é-contribution
still remains d-like. With the potential, for a scattering
time ¢’ and a given transferred momentum, again a 4-
contribution of the WF keeps its d-character.

These considerations allow us to define WP’s [12]
followed by a “simulative particles” carrying § contri-
butions of the WF through the Wigner phase space.
While along a free path a single d-like contribution of
the WF mantains its value, at each interaction vertex it
acquires a new weighting factor accounting for the effect
of the interaction. Thus the Neumann series obtained
by Eq.(16) may be evaluated by a Monte Carlo tech-
nique, sampling the integrals over the scattering times
and the momentum transferred by potential or phonons,
in complete analogy to the “Weighted Monte Carlo” so-
lution of Boltzmann equation in its integral form [13].



yve are iterested 1n the evaluation or a v I tihat 1s dlag-
onal over phonon occupation numbers at the final time.
If the requirement of diagonality is imposed also at the
initial time by taking f®)(r,p, {n,}, {ng},to) # 0 only
if {ny} = {ng}, then only terms containing a sequence
of creation and annihilation operators that changes in
the same way the two sets of phonon occupation num-
bers contribute to the evaluation of the WF. As a con-
sequence, only WP’s with an even number of vertices
involving a specific mode g are present.

INITIAL DATA

‘ INITIALIZATION OF STATISTICS ‘

GENERATESINITIAL MOMENTUM p, -
™ WITH PROBABILITY Py(py) )
GENERATESNUMBER OF PHONON W=W/P (n)
PROCESSESWITH PROBABILITY P,(n)
GENERATESTYPES OF PROCESSES W=W/[P(L) ... P(n)]
(RE-RA-VE-VA) WITH PROB. P,(type)

GENERATESTWO TIMESFOR EACH
PHONON PROC. WITH PROB. P(t)

I

GENERATESA PH. MODE q FOR EACH
PHONON PROC. WITH PROB. P (a)

GENERATES ALL THE PARTSOF THE W=W I, 2 cos F(q;) bose,
‘PARTICLE' TRAJECTORY

COLLECTS STATISTICS F(r.p)=W f(roPoto)

W=WIP(ty) ... Py(tz)]

W=W/[Py(@y) .. Po(d,)]

Figure 1. Flow-chart of a possible quantum MC code.
W is the weight of the path.

The way of selecting the WP’s is completely free [14].
As a consequence a number of different algorithms can
be devised according to the specific problem to be faced.
Fig.1 describes a specific one, among those we have de-
veloped, where for simplicity only scattering with phonons
(real emission RE, real absorption RA, virtual emission
VE and virtual absorption VA) is included. It should
be noticed that each Wigner path corresponds to sev-
eral possible sampling of the integrands. This introduces
the multiplicity factors 2 in front of the cosine weights
reported in the diagram in Fig.1.

1he wi's method Can also be extended tO the case O
a two-time WF. In fact, a dynamical equation formally
identical to Eq.(10) has been derived by the authors
for a general WF dependent on momentum and energy
separately [5]. The MC algorithm simulating the time
evolution of the WF in the presence of electron-phonon
scattering can be extended to evaluate f,(r,p,w,t).

Acknowledgments

This work has been supported by the U.S. Office of
Naval Research (contract No. N00014-98-1-0777), by
the MIUR, and by the CNR under the project MADESS
1.

REFERENCES

[1] E.P. Wigner, Phys. Rev. 40, 749, 1932.

[2] V. 1. Tatarskii, Sov. Phys. Usp. 26(4), 311, 1983.

[3] M. Hillery, R.F. O’Connell, M.O. Scully, and
E.P. Wigner, PHYSICS REPORTS 106, 121, 1984.

4] W.R. Frensley, Rev. Mod. Phys. 62,745, 1990.

[6] C. Jacoboni, R. Brunetti, P. Bordone, and A.
Bertoni, in Topics in High Field Transport in
Semicondustors, Edited by K.F. Brennan and P.P.
Ruden, World Scientific (Singapore 2001), p.25.

[6] A. Bertoni, P. Bordone, R. Brunetti and C. Ja-
coboni, J. Phys.: Condens. Matter 11, 5999, 1999.

[7] C. Jacoboni, A. Bertoni, P. Bordone, R. Brunetti,
Mathematics and Computers in Simulation 55, 67,
2001.

[8] Yu. E. Lozovik and A. V. Filinov, JEPT 88, 1026,
1999.

[9] F. Rossi, C. Jacoboni, M. Nedjalkov, Semicond. Sci.
Technol. 9, 934, 1994.

[10] G. Rickayzen, Green Function and Condensed Mat-
ter, Academic Press (London, 1980).

[11] F. Rossi and C. Jacoboni, Europhys. Lett. 18, 169,
1992.

[12] M. Pascoli, P. Bordone, R. Brunetti, and C. Ja-
coboni, Phys. Rev. B 58, 3503, 1998.

[13] F. Rossi, P. Poli, and C. Jacoboni, Semicond. Sci.
Technol. 7,1017, 1992.

[14] P. Bordone and C. Jacoboni, to appear in Physica
B.

—



