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ABSTRACT

The effects of rate-enhancing dopants and externally
applied stress on interfacial growth during silicon crys-
tallization are modeled using advanced numerical meth-
ods. The boron doped crystalline Si is modeled as an
isotropic linear elastic solid, and the amorphous as a
viscous fluid with a time dependent viscosity to reflect
structural relaxation. The effect of the dopant is in-
cluded through its position dependent effect on the rate
of crystallization at the interface. Appropriate coupling
conditions across the boundary are defined, and both
problems are solved using advanced boundary integral
methods. The interface is advanced in time using the
level set technique. The simulation results match well
with experiments and support the fact that both stress
and dopant-gradient effects, along with interface orien-
tation effects, must be accounted for to explain the ob-
served behavior. These new effects are of general rele-
vance to the growth of all non-hydrostatically stressed
solids, and are therefore important in film synthesis,
with potentially significant applications in electronic de-
vices and thin film coatings.
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1 INTRODUCTION

Strained-layer heteroepitaxy is becoming a useful tool
for device designers looking to enhance and extend the
capabilities of Si-based devices. As a result, an increas-
ing number of Si-based devices involving strained layers
are being investigated for use as high-speed field-effect
transistors, heterojunction bipolar transistors, and pho-
todetectors. Many of these devices can be made read-
ily with advanced techniques such as molecular beam
epitaxy (MBE). The use of such devices would become
much more widespread if more cost-effective processes,
such as ion-implantation followed by subsequent solid-
phase epitaxial growth (SPEG) to restore crystallinity
and activate dopants, could be used for their fabrication.

In this work, we investigate the role of stress on in-
terfacial roughening during SPEG of Si, specifically in

the presence of ion-implanted boron, a dopant that en-
hances the local interface velocity relative to that of pure
Si. In earlier works, we showed that compressive stress
destabilizes the amorphous/crystalline interface during
SPEG of Si and allows it to roughen [1]–[3]. The mech-
anism for this roughening does not arise from energetic
concerns, as has been described in references [4] and
[5], but instead from the effect of stress on the barri-
ers to local kinetic growth processes [6], [7]. The sim-
ulation methods developed to study the Si SPEG are
adapted and extended to treat the boron doped Si ex-
periments. Comparison of experiment and simulation
shows that a complex interplay between stress, dopant-
gradient, and crystalline anisotropy effects determines
the interface evolution during growth.

2 EXPERIMENT AND TRANSITION

STATE MODEL

An initially ‘flat’ amorphous/crystalline silicon in-
terface with a roughness of approximately 2 nm and a
boron doping profile that varies with depth (distance
from the top surface) has a compressive stress σ1 (< 0)
applied mechanically in the plane of the interface at a
temperature of 490oC (see Fig. 1). The subsequent
crystallization process results in a roughening of the in-
terface. The sample geometry and procedures used to
measure the stress effects are described in reference [3].
Transition state theory is used to describe the phase
transformation at the silicon amorphous/crystal inter-
face and is described in detail in reference [1].
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Figure 1: Amorphous/crystalline silicon under compres-
sion



3 NUMERICAL METHODS

The simulations are based on a coupling of bound-
ary element and level set methods. The boundary con-
tour version of the boundary element method (BEM) is
used to evaluate displacements and boundary stresses
on the crystal interface, and tractions on the amor-
phous interface. Level set methods tract the evolution of
this crystalline/amorphous interface. The choice of the
boundary contour method (BCM) over the other ver-
sions of boundary element method for 2-D simulations
is explained in the Simulation section.

3.1 Boundary contour method

The conventional BEM for linear elasticity requires
the numerical evaluation of line integrals for 2-D prob-
lems and surface integrals for three-dimensional (3-D)
ones. By observing that the integrand vector of the
boundary integral equation for the Laplace equation is
divergence free, Lutz [8] has shown that a further reduc-
tion in dimensionality can be achieved. Nagarajan [13]
developed this idea into a numerical method that was
later termed BCM. Overall, the BCM has been devel-
oped for linear elasticity (e.g., [9]–[12]), potential theory
[13], and Stokes flow [14]. The divergence free prop-
erty allows, for 3-D problems, the use of Stokes’ theo-
rem to transform surface integrals on the usual bound-
ary elements into line integrals on the bounding con-
tours of these elements (thus the name boundary con-
tour method). For 2-D problems, a transformation based
on this divergence free property converts line integrals
to path-independent integrals which do not require any
numerical integration: integrals are evaluated using po-
tential functions in closed-form. The above transforma-
tions are quite general and apply to boundary elements
of arbitrary shapes. Thus, the BCM requires only nu-
merical evaluation of line integrals for 3-D problems and
simply the evaluation of potential functions at points on
the boundary of a body for 2-D cases.

3.2 Level set methods

A traditional technique for tracking moving inter-
faces is known as the marker particle method for which
the interface propagation during incremental time step
∆t is monitored by shifting each interfacial marker x

in its normal direction n by an amount v(x)∆t. This
method can be highly accurate for small-scale motions
of the interfaces because of their adaptive nature. How-
ever, under complex motions of the interface, the tech-
nique can suffer from instability and topological limi-
tations because it follows a local representation of the
front, rather than a global one that takes into account
the proper entropy conditions and weak solutions.

Level set methods are computational techniques, in-
troduced by Osher and Sethian [15], for tracking mov-

ing interfaces in two and three dimensions. These tech-
niques work by first embedding the propagating inter-
face as the zero level set of a time-dependent, implicit
higher dimensional function; and second, embedding (or
extending) the interface’s velocity to this higher dimen-
sional level set function. The resulting equations of mo-
tion are then solved in a fixed grid Eulerian setting.
Level set methods have been used with considerable suc-
cess in a wide collection of settings, including fluid me-
chanics, crystal growth, combustion, medical imaging.
This work uses FrontPack (a library for level set meth-
ods applied to interface evolution by Adalsteinsson and
Sethian) to characterize and advance the evolving inter-
face using a NarrowBand level set formulation [16]. For
details about the theory, algorithms, and applications of
level set methods, the reader is referred to [17].

4 SIMULATION

Consider a two-phase Si system subjected to non-
hydrostatic compressive stress σ1 as shown in Fig. 1.
The interface of the system is modeled as a sine wave
with a peak to peak amplitude of 2 nm and a wavelength
w. By symmetry only a half wavelength segment needs
to be treated (see Fig. 2). The silicon crystal is modeled
as an isotropic linear elastic solid with a shear modulus
Gc = 0.6814 × 1011 Pa and Poisson ratio νc = 0.2174.
The amorphous solid is modeled by Stokes flow with a
time dependent viscosity to reflect structural relaxation
[1]. We assume plane stress for the elastic solids analy-
ses. The interface velocity (normal to the interface) is
determined by using Eq. (1) in reference [1]. The ve-
locity is a function of a number of variables, including
surface stress, orientation, and curvature at each point
on the interface.
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Figure 2: Geometry and BCs for the simulation

The framework employed to determine the interface



growth can be described as follows. First, at time t = 0
the traction on the crystal interface is assumed to be
τ c = 0. Then the crystal problem is solved using the
BCM for elasticity. A key step in obtaining the trac-
tion continuity across the interface is determining the
velocity va of the amorphous interface at a given time.
This velocity results from the relaxation of stress in the
crystal due to the change in shape of the interface as
it grows. The rate of displacement change du per time
step ∆t on the crystal interface induces velocity of the
amorphous interface

va ≈
∆u

∆t
. (1)

Once va is determined, traction τ a on the amor-
phous interface can be found by solving the amorphous
problem using the BCM for Stokes flow. If |τ c−τ a| < ε

has not been achieved, τ
(i)
a of the current time step is

used to update tractions τ
(i+1)
c of the next time step on

the crystal interface as follows:

τ (i+1)
c

= τ (i)
c

+ kr τ (i)
a

(2)

where kr is a relaxation coefficient, and the calculation
is iterated.

Upon convergence, the boundary stress on the crys-
tal interface is computed using a post-processing BCM
routine. The interface velocity vc can then be deter-
mined by substituting the boundary stress into Eq. (1)
in reference [1]. Finally, vc is supplied to FrontPack
in order to advance the crystal interface for the given
time step ∆t. Note that the mesh of the new inter-
face provided by level set methods could be highly non-
uniform. This non-uniformity arises as a result of the
fixed grid Eulerian setting employed by level set meth-
ods, where two nodes on a new front can be very close
to each other. However, this non-uniform mesh can di-
rectly be employed by the BCM without degenerating
the result accuracy as all boundary integrals are evalu-
ated analytically in the BCM for 2-D calculations.

5 RESULTS AND DISCUSSION

The simulation results match well with experiments.
Figures 3 and 4 show plots of the roughness (peak to
peak amplitude) vs depth for applied stresses of zero
and -0.5 GPa, respectively, for both the simulation and
experiment. The zero stress simulation was fit to a
wavelength of 150 nm and the -0.5 GPa to a wave-
length of 300 nm. These results indicate increasing
stress increases overall interface roughening. Match-
ing the boron dopant profile versus depth (not shown)
with the roughening profile for the zero stress experi-
ment shows that the roughening increases with increas-
ing dopant concentration. Comparing to the -0.5 GPa
stress case indicates that stress tends to sustain the

roughening beyond the peak in boron doping. We find
that stress, dopant, and kinetic anisotropy effects are all
important in determining the roughness evolution dur-
ing SPEG of boron doped silicon.
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Figure 3: Interface roughness versus depth (σ1 = 0)
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Figure 4: Interface roughness versus depth (σ1 = -0.5
GPa)
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