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ABSTRACT 

 
     A significant portion of the time required for 
simulating full three-dimensional (3D) charge 
transport in semiconductor devices using 
particle-based methods is spent solving the 
necessary field equations. Two highly effective, 
iterative techniques available for solving large-
sparse systems of equations are the conjugate 
gradient (CG) method and the multigrid (MG) 
method.  In this work, variants of the CG and 
MG methods are self-consistently coupled to a 
particle-based full-band simulator and are 
applied to model small, 3D structures. Detailed 
analyses of both performance and solver 
robustness are presented for different algorithmic 
configurations.  Hybrid strategies using various 
coupling schemes for improving overall 
performance behavior of the Poisson solver are 
also discussed. 
 
Keywords: conjugate gradient, multigrid, Bi-
CGSTAB, Poisson solver, particle-based 
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1 Introduction 
 
     In particle-based[1] device simulations the 
spatial distribution of the electric field is 
generally computed through the frequent 
solution of Poisson’s equation. The Laplace 
operator is typically discretized in 3D using an 
inhomogeneous, 7-point, finite-difference 
scheme. The result is a large set of linear 
equations which are best solved through iterative 
techniques because a good initial guess is 
available through the self-consistent framework 
of particle-based simulation algorithms. Both CG 
[2] and MG[3] methods have been used recently 
in device simulations with considerable success 
[4][5][6].  Their applicability to solving large 

systems of linear equations can be quite useful 
considering the need of frequent solution of the 
field equations in self-consistent device 
simulations. Indeed, the field equations are 
solved tens of thousands of times in a typical 
simulation.  Each of the mentioned methods is 
unique in terms of the manner in which the 
numerical algorithm is utilized to achieve the 
desired convergence threshold.  The next section 
is devoted to a discussion of the numerical 
methods used in our simulations. Results are 
then presented and discussed in detail.  Finally, 
we conclude with some brief remarks about the 
effectiveness of each method.  
 

2 Numerical Methods 
 

     Three of the most commonly used iterative 
techniques in device simulations today include 
the successive over-relaxation (SOR)[1] method, 
the multigrid method (MG), and variants of the 
method of conjugate gradients (CG).  Each of 
these methods has its own inherent advantages 
and disadvantages when used for solving 
Poisson’s equation in device simulations.   
     Among the mentioned approaches, the 
simpler technique for solving systems of linear 
equations is the SOR method.  This method is 
easy to implement and can quickly be 
incorporated into a device simulation code.  
Although this method can be robust for solving a 
system of linear equations, its effectiveness is 
limited to smaller convergence threshold values 
(typically less than 1x10-4 for homogeneous 
systems and even less for inhomogeneous ones) 
due to its increasingly small error reduction rate 
as the error decreases. This behavior is typical of  
standard iterative solvers, and depends on the 
fact that different Fourier components of the  
error are not equally reduced on a given 
discretization grid. Thus, this method can be 



costly at lower convergence values resulting in 
unpractical convergence times.  
     A more efficient method is the multigrid 
method. Even if it has a highly algorithmic 
complexity when compared to the SOR 
approach, the multigrid is a highly effective 
method for simultaneously reducing different 
spectral components of the error.  This is 
accomplished by recursively solving the linear 
system on a hierarchy of differently spaced grids, 
by interpolating quantities from a series of fine 
to course grids through projection and restriction 
operators that conserve integrals [6].  Besides the 
algorithmic complexity, the multigrid approach 
has been proved to be capable of efficiently 
handling the irregular grids used in device 
simulations [7]. 
     Conjugate gradient solvers have become 
popular in recent years due to their relatively 
easy implementation and the efficiency with 
which they can quickly solve large systems of 
linear equations assuming that a good initial 
guess is provided.  This type of solver is 
typically classified as an error projection method 
in that a set of linearly independent basis vectors 
is  generated to determine the solution update.  
Because of their dependence on the initial guess, 
the convergence behavior of this approach has 
been shown to improve through use of an 
appropriate preconditioner that can effectively 
reduce the spectral radius of the system thus 
decreasing the convergence time. 
     In this work, we compare the three methods 
mentioned above in application to a particle-
based simulator[8]. We also investigate the 
effectiveness of the multigrid method when used 
as a preconditioner for the conjugate gradient 
method.  The CG variant chosen is the 
biconjugate gradient stabilized method (Bi-
CGSTAB) due to its improved convergence 
behavior as discussed in [9].  
     

3   Simulations 
 
     The device chosen to perform the tests is a 
three-dimensional silicon diode with uniform 
doping on both sides of the junction 
(NA=ND=1017cm-3).  Two sets of simulations are 
performed. The first one is discretized on a 
50x50x60 homogeneous grid with 5 nm mesh 
spacing. The second simulation grid is still 
50x50x60 but is slightly inhomogeneous in the z 
direction with cell dimensions of 5 nm within the 
depletion region and 5nmx5nmx7.5nm in the 
bulk regions.  Due to the diffusion time of 

minority carriers in the diode structure, the 
simulation time is 10ps.  Timing data was 
recorded for 0.1 ps.  Therefore the results 
graphed represent only a fraction of the total 
simulation time required for convergence. The 
total time required for a simulation time of 0.1 is 
approximately 1-2 hours. These results represent 
the transient behavior of the simulation where 
the SOR and CG methods are the most 
inefficient.   Steady-state results can be seen at 
the end of the simulation at 0.1 ps. The number 
of carriers used for all simulations are 150000 
electrons and holes and correspond to 4 particles 
per cell.  To compensate for the fluctuations in 
plasma density due to the small number of 
particles per cell, a Poisson time step of 2fs was 
used. 
     Timing data are shown in Figs. 1 and 2 for a 
convergence threshold of 1x10-5.  Figure 1 shows 
the results obtained for the homogeneous device.  
The timing results for the inhomogeneous device 
are presented in Fig. 2 and indicate an average 
increase in the required cpu time over the 
homogeneous case of 4-5s per iteration for the 
multigrid preconditioned conjugate gradient 
method and 8-10s per iteration for the SOR-
preconditioned Bi-CGSTAB method. The results 
shown in Fig. 2 are obtained during the initial 
transient phase of the device.  Timing data is 
taken in the steady state region near the end of 
this plot.   These results are consistent with that 
expected for a slightly non-symmetric system.     
     In both sets of simulation results, the 
parameters used for each iterative method were 
identical.  A relaxation coefficient (ù) of 1.2 was 
used in the SOR preconditioner to minimize the 
time spent per iteration within the Bi-CGSTAB 
routine.  
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Figure 1: Timing results for a homogeneous 
device. 
 



The MG algorithm uses the W-cycle to loop 
through the grid levels and an alternating line 
relaxation routine [1]. The optimal relaxation 
scheme is highly dependent on device geometry 
and in these simulations the most efficient 
method is to relax in both the x- and y-directions 
on each grid [7].  
     The multigrid preconditioned Bi-CGSTAB 
method (MGCG) uses a V-cycle for the MG 
preconditioner.This particular cycle, representing 
the algorithmic path of smoothing, is the most 
efficient cycle for coupling  the two iterative 
methods. 
     The basic SOR solver used in both sets of 
simulations employs a relaxation coefficient 
determined by using the optimized 2D relaxation 
coefficient discussed in [3].  For the device 
simulated, the value of this coefficient is 1.88. 
     A brief comparison of the results shows that 
an increase in Poisson solver times for both the 
SSOR-BiCGSTAB and MGCG methods occurs 
in the inhomogeneous case.  The MG method, on 
the other hand, appears to have increased only 
slightly (less than 0.5s per iteration).  Despite the 
large computational implementation required 
results indicate that the MG method is faster than 
both the SSOR preconditioned Bi-CGSTAB 
method by 6-10 seconds per iteration and the 
multigrid preconditioned Bi-CGSTAB method 
by 3-5 seconds per iteration on average. 
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Figure 2: Timing results for an inhomogeneous 
device. 
 
This is due in large part to the number of internal 
device loops that must be completed during each 
iteration of the Bi-CGSTAB method.  Although 
the latter method effectively reduces the total 
number of Poisson solver iterations required for 
convergence, the total time spent in the solver 

itself is larger than that achieved using just the 
MG method.  There appears to be a definite 
tradeoff between solver iterations and the cpu 
time expended per iteration within this 
comparison tilting the scale in favor of using 
multigrid techniques over CG methods in future 
simulations. 
     In both Figs. 1 and 2, it is clear that the 
Poisson solver time in 3D simulations is 
significantly larger than the average scattering 
time.  When compared with 2D simulation 
results however, the scattering time is the 
dominant contribution to the total simulation 
time.  Thus the importance of faster Poisson 
solvers becomes clear as the complexity and 
dimensionality of simulated device structures 
increases.  
 

4  Future Work/Conclusions 
 
     Although, the use of MG method appears to 
be the most efficient and effective method for 
solving large systems of linear field equations in 
device simulations particularly in 
inhomogeneous systems , we have demonstrated 
the improved performance of the Bi-CGSTAB 
method using a MG preconditioner. 
      Results have only been shown for the first 
1/100 time steps necessary to reach the full 
steady-state results and therefore only represent 
the performance of the presented Poisson solvers 
in the transient regime.  Although the time-per-
iteration is not thought to decrease dramatically 
after 0.1 ps.  
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