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ABSTRACT

Manipulation of micro-sized particles and biological cells
using dielectrophoresis (DEP) is an emerging technique in
MEMS and nano technology[3]. This paper presents an exact
solution of dielectrophoretic motion of a polarized particle in
the vicinity of interdigitated bar electrodes fabricated on pla-
nar insulating surfaces which have been widely employed in
conjunction with hydrodynamic forces and gravity to sepa-
rate particles in field flow fractionation device[5]. We solved
the electric field using exact mixed boundary conditions on
the electrode plane. DEP forces exerted on a spherical parti-
cle are calculated and particle levitation is studied. Besides
the levitation force, the particle will also experience a lateral
force which causes particles clustering at certain locations
above the electrode plane depending on the geometry of elec-
trode array. Comparison is made with previous approximate
solutions and numerical results.
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1 INTRODUCTION

It is observed that a polarized particle will move in re-
sponse to an external non-uniform electric field. Such a phe-
nomenon is well known as dielectrophoresis (DEP) in con-
trast to electrophoresis of charged particles in electric field[3].
The mechanism of DEP arises from the polarization of parti-
cles and non-uniform forces exerted by external electric field.
This technique has been widely employed to manipulate mi-
cro and nano-sized latex particles as well as other biological
particle such as cells, bacteria and virus.

The electrostatics and electrodynamics of both simple ho-
mogeneous particles and composite particles enclosed by lay-
ered shell structures have received considerable attention in
cellular biology, bioengineering, and food industry. Funda-
mental research studies have sought to establish the signifi-
cance of microelectrode properties on the equilibrium posi-
tion and transient motion of particle mixture under various
experimental conditions. Since the particles are small com-
pared with electrode dimensions, the study of electric fields
generated by the electrode structure becomes essential and
can be used to guide the design of microelectrode geometry
with desired functions[1].

One typical application of DEP device widely used in
separation technology is Field Flow Fractionation (FFF), in

which inter-digitated electrode arrays are fabricated on a pla-
nar substrate[5]. A simplified model for a FFF chamber is
sketched in figure 1 which illustrates how particles of differ-
ent properties are levitated to different heights by DEP forces
and are separated by applying a horizontal flow. Because
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Figure 1: DEP of particles above interdigitated electrodes.

DEP force depends on the arrangement of the electrode and
the resulting electric field distribution as well as the dielec-
tric properties of particles and the surrounding medium, this
leads to several possible electrode array designs configura-
tions that can be utilzed for particle manipulation and separa-
tion. Thus, there are several approaches through which DEP
can be employed for the separation of a mixture of particles
with different properties.

In this paper, we present an exact solution for DEP forces
exerted on spherical polarized particles in the vicinity of in-
terdigitated electrode arrays in order to more accurately char-
acterize the effect of electric field on particle motion. The
governing equations are solved analytically using exact mixed
boundary conditions on the electrode array. Previous studies
( [1], [2], [6]) have assumed a linear distribution of electric
potential between adjacent electrodes and thus failed to pre-
dict the singular behavior of electric field near the edge of the
electrode, which we identified through an asymptotic analy-
sis of electric field near a wedge-shaped electrode. Our solu-
tion reveals some new features that have not been predicted
in previous studies. The analytic solution also serves as a
benchmark to validate numerical DEP models that are appli-
cable to more complicated microelectrode.

2 ELECTRIC FIELD AND DEP FORCE

2.1 Governing equations for DEP

The DEP force can be derived by either effective dipole
moment method or Maxwell stress tensor method. In gen-
eral, the time-averaged DEP force for a spherical particle in



AC electric field is given by

f =
1
2
< (m · ∇)E (1)

wherem is the dipole moment. For an isotropic, homoge-
neous dielectric spherical particle, the DEP force is given
by[3]

f = 2πεma3<(fcm)∇E2 (2)

in whichfcm is Clausius-Mossotti factor defined by[3]

fcm =
ε∗p − ε∗m
ε∗p + 2ε∗m

(3)

where the complex permittivity isε∗ = ε − iσ/ω and sub-
script m and p represent the surrounding media and the par-
ticle. The Maxwell equations suitable for DEP study can be
written in

E = −∇Φ (4)

∇ · σE +
∂ρ

∂t
= 0 (5)

∇ · εE = ρ (6)

The complex potential of AC electric field of interest can be
expressed as

Φ = <(φeiωt) (7)

If we consider problems without phase variation, the modula
of the complex potentialφ satisfies Laplace equation

∇2φ = 0 (8)

2.2 Singular behavior of electric potential

We first investigate the behavior of the electric field near
a singular point/line. The region of interest consists of piece-
wise smooth surfaces (2D) or curves (3D). The boundary
condition will either be potential, flux or mixed type. There
are two possible types of singularities: geometric singular-
ity arising from discontinuity of normal vector of the surface
(curve) and flux singularity arising from change in the nature
of the homogeneous operator specifying the boundary condi-
tion. In this paper, we focus our attention on two dimensional
problem. Consider electric potential distribution in a wedge
region0 ≤ θ < θ0, r > 0 subject to the following boundary
condition:

φ(r, θ = 0) = 0 (9)

1
r

∂φ(r, θ0)
∂θ

= f(r) (10)

in whichK is a constant. The asymptotic solution of the po-
tential close tor = 0 can be obtained from Mellin transform

φ = Krπ/2θ0 sin
πθ

2θ0
+ O(r3π/2θ0)

1
r

∂φ

∂θ
= K

π

2θ0
r(π−2θ0)/2θ0 cos

πθ

2θ0
+ O(r3π−θ0)/2θ0)

∂φ

∂r
= K

π

2θ0
r(π−2θ0)/2θ0 sin

πθ

2θ0
+ O(r3π−θ0)/2θ0)

In particular, when electrodes are fabricated on a planar sur-
face andθ0 = π, we find that the flux singular behavior near
the edge of the electrode has a power−1/2. This corre-
sponds to velocity singularity at the tip of a planar barrier
in an invicid flow.

2.3 Exact solution of electric field and DEP

We now consider DEP levitation of particles in the vicin-
ity of a parallel electrode array. The width of electrode stripe
is d1 and the spacing between adjacent electrodes isd2. The
configuration exhibits periodicity with period2d defined by
d = (d1 + d2)/2. We apply voltagesV0 and−V0 to adja-
cent electrode pairs. For mathematical simplicity, let’s first
non-dimensionalize the Laplace equation by introducing the
characteristic potential and length as

φc = V0, L =
d

π
(11)

Due to geometric symmetry, only the region0 < x < π
needs to be solved. If we choose the origin at the center of
electrode, the corresponding boundary conditions are

φ = 1, y = 0, 0 < x < c (12)
∂φ

∂y
= 0, y = 0, c < x < π (13)

∂φ

∂x
= 0, x = 0 (14)

φ = 0, x = π (15)

in whichc = πd1/2d. The general solution to Laplace equa-
tion satisfying boundary conditions atx = 0 andx = π is
given by

φ(x, y) =
∞∑

n=1

An

λn
cos λnxe−λny (16)

where

λn = n− 1
2

(17)

The boundary condition aty = 0 leads to dual series equa-
tions

∞∑
n=1

λ−1
n An cosλnx = 1, 0 < x < c (18)

∞∑
n=1

An cosλnx = 0, c < x < π (19)

These equations can be solved by a standard method[4] for
whichAn are given by

An =
Pn−1(cos c)
K(cos( c

2 )
(20)

wherePn is Legendre polynomial of ordern andK is com-
plete elliptic function of the second kind. Potential distribu-
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Figure 2: Potential distribution at various heights.

tion at various heights above the electrode plane forc = 0.5π
is shown in figure 2. The components of electric field can be
calculated by differentiating the series term by term as

Ex = −∂φ

∂x
=

∞∑
n=1

Pn−1(cos c)
K(cos c

2 )
sinλnxe−λny (21)

Ey = −∂φ

∂x
=

∞∑
n=1

Pn−1(cos c)
K(cos c

2 )
cosλnxe−λny (22)

with An given by (20). From asymptotic behavior of the
Legendre polynomial for large value of order

Pn(x) ∼
√

1
n

cosx + O(n−3/2) (23)

we see that (21) and (22) converge for anyx andy. In par-
ticular, the electric field at the electrode plane is given by

Ex =

{
0 0 < x < c∑∞

n=1
Pn−1(cos c)

K(cos c
2 ) sin λnx c < x < π

(24)

Ey =

{ ∑∞
n=1

Pn−1(cos c)
K(cos c

2 ) cosλnx 0 < x < c

0 c < x < π
(25)

Figure 3 shows the x-component of electric fieldEx normal-
ized byV0π/d for four values of height. NoteEx as well as
Ey (not shown) diverges at the edge of the electrode.

Once the components of the field are obtained, the square
of electric field strength normalized byV 2

0 π2/d2 is calcu-
lated as

E2 =
1

K2
(
cos c

2

)




[ ∞∑
n=1

Pn−1(cos c) sin λnxe−λy

]2

+

[ ∞∑
n=1

Pn−1(cos c) cos λnxe−λny

]2


 (26)

We have thus obtained an analytic solution for the electric
field based on exact boundary condition along the electrode
plane. The associated DEP force on a spherical particle can
now be calculated and applied to computer particle motion.
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Figure 3: Lateral electric field at various heights.

3 RESULTS AND DISCUSSION

Previous studies have assumed that the potential varies
linearly between adjacent electrodes and the resulting lateral
electric fieldEx is a step function between adjacent elec-
trodes. Figure 2 indicates non-linearity behavior of poten-
tial near the electrode edge. As a results, the local field ex-
hibits square-root-type singularity which has not been pre-
dicted previously. In particular, whend1 = d2, i.e.,c = π/2,
from property of Lengdre functionPn(0) = 0 for oddn, we
find that

Ex(x, y) = Ey(π − x, y). (27)

The DEP force exerted on a polarized spherical particle of
radius a with electric conductivityσp and permittivity εp

suspended in another dielectric media (σm, εm) is calculated
from (1) by substituting (21) and (22) and perform differen-
tiation term by term. The resulting series expressions∇E2

converges for anyx providedy > 0 and decays exponen-
tially as the particle is far removed from the electrode plane.
If we normalize the DEP by choosing characteristic force

f0 = 2π4ε0εma3<
[

ε∗p − ε∗m
ε∗p + 2ε∗m

]
V 2

0

d3
(28)

then we have
f = f0∇E2 (29)

We plotted dimensionless levitation forcefy and lateral drift
forcefx in figure 4 forc = π/2. Equation (27) demonstrates
that theE2 andfy are symmetric with respect to bothx = 0
andx = d1/2, while fx is anti-symmetric.

At sufficient height above the electrode plane, we retain
only the first term and obtain the approximate expression for
E2 as

E2 ∼ e−y

K2
(
cos c

2

) (30)

These results provide the fundamental governing equations
for flow field fractionation devices which are widely used to
separate or manipulate a variety of biological particles. The
first order DEP force is independent of the lateral position
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Figure 4: Normalized levitation and the lateral forces.

and directs particles away from the electrode plane for neg-
ative DEP. However, detailed numerical simulation indicates
that particles will accumulate laterally when they are levi-
tated and the cluster of particles accumulates at center of the
electrodes or their gaps. This can be demonstrated by ex-
amining higher order terms for DEP force. By expanding
equation (26), we obtain

E2 =
1[

K
(
cos c

2

)]2
[
e−y + 2 cos c cosxe−2y

+ (cos2 c + 2 cos 2xP2(cos c))e−3y + O(e−4y)
]

This equation shows that there is a lateral force which is
much smaller than the vertical force. It drives the particles
toward the region right above the center of the electrode gaps
when c < π/2 or toward the electrode themselves when
c > π/2.

If the interactions between particles are neglected, we can
simulate the evolution of particle ensemble by tracing parti-
cle trajectory individually. Particles that experience different
DEP force will be levitated to different heights where gravity
is balance by the DEP force. Particle collection is achieved
by applying a lateral flow or travelling wave DEP force. In
order to solve the dynamic equation for particle motion in a
coupled manner with the fluid flow equations, we have devel-
oped a numerical model available in CFD-ACE+, CFDRC’s
commercial multi-physics simulation package. Simulation of
particle evolutions for a mixture which contains three types
of particle of different conductivities are shown in figure 5.

Figure 5: Particle evolution for a mixture containing three
types of species at t=0, 1s, 5s. The contours showE2. Dif-
ferent type of particles are shown in different color.

We have also compared the present analytic results for elec-
tric field with numerical solutions based on CFD-ACE+ and
have found excellent agreement. Detailed computational ap-
proach and its application will be published elsewhere.
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