
ABSTRACT
As designers become more aggressive in introducing

optical components into micro-systems, additional capabili-
ties are required for modeling and simulation tools.  Com-
mon optical modeling techniques are not applicable for most
optical micro-systems, and techniques that are valid are
computationally slow.  In this paper, we introduce an angu-
lar spectrum propagation modeling technique that greatly
reduces computation time while maintaining the accuracy of
the full scalar formulation.  We present simulations of light
propagating through optical MEM components and show
the advantages of this optical propagation method and the
integration of the technique into a system-level multi-
domain CAD tool.

Keywords: optical MEMS, MOEMS, angular spectrum,
optical propagation, CAD

1  INTRODUCTION
It is well known that optics can provide advantages to

micro-systems in terms of speed, bandwidth and reduced
power [7]. However, by adding the optical domain to micro-
systems, many new challenges are introduced in system
design.  In these multi-domain systems, optical effects, such
as diffraction, interference, and scattering, are critical to the
success or failure of the designs.  Therefore, modeling and
simulation are crucial early in the design stage.   

Currently, multi-domain micro-systems are simulated
by domain-specific tools, using component level models
that are performed at the physical level.  In contrast, system-
level tools are designed to include multiple domains and
allow efficient system simulation, modeling components by
their functionality rather than their physical construction.
Established MEM system-level modeling tools exist, as
physical device models are extracted to the system-level.
However, optical propagation models are not easily inte-
grated into these tools. In this paper, we describe an optical
propagation technique suitable for system-level multi-
domain micro-system CAD tools.

When light interacts with the small feature sizes of
micro-systems, many common optical propagation model-
ing techniques are invalid, and full vector or scalar solutions
to Maxwell's equations are required [3].  However, these
optical modeling techniques are computationally and mem-

ory intensive, leaving interactive design, between system
designer and CAD tool, almost impossible.  As more optical
components are introduced into micro-systems, the need for
accurate and efficient simulation tools increase. Therefore,
the difficulty in determining an optical propagation tech-
nique suitable for system-level CAD tools for modeling
optical MEM systems is that the optical model must be rig-
orous enough to support micro-system dimensions and also
be computationally efficient.

In this paper, we introduce an optical propagation
model that provides valid results for micro-systems, with a
computational algorithm that allows for interactive CAD
design.  We first present a brief background of optical prop-
agation modeling, from which we find valid techniques for
optical MEM system modeling. Next, we provide a descrip-
tion of the angular spectrum technique used to greatly
reduce the computational load of optical modeling.  We fol-
low with a presentation of example optical MEM systems,
with simulations and analyses.  We conclude with a sum-
mary and future work.

2  SCALAR OPTICAL PROPAGATION
Optical propagation can be modeled completely by the

solution of Maxwell's equations for both the electric field
vector, , and the magnetic field vector,  [2].  The com-
putation is performed in 3D, as each vector is composed of
x, y, and z values.  This method is valid for optical modeling
in micro-systems, however, the computation time and mem-
ory requirements are extremely demanding.  

To reduce the computational resource requirements, a
scalar representation is commonly used. Scalar optics are
defined by summarizing vectors  and  into a single com-
plex scalar, U.  No longer are we solving in 3D, as the scalar
function represents a complex 2D wave function. This
replacement is valid if the propagation occurs in a dielectric
medium.  Further, the propagation medium needs to be lin-
ear, isotropic, homogenous, nondispersive, and nonmag-
netic.  Propagation through free-space meets these
requirements.  

Similar to the vector solution, this complex scalar must
also satisfy the wave equation, known as the Helmholtz
equation:  , where, the wave number,

.  With use of Green's theorem, the Rayleigh-
Sommerfeld formulation can be derived from the wave
equation for the propagation of light in free-space [2]:
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where, , Σ is the area of the
aperture, and z is the distance that the light is propagated
from an aperture plane (z = 0) to an observation plane.  It is
assumed that the two planes are parallel, with coordinate
systems (ξ,η,0) in the aperture plane and (x,y,z) in the obser-
vation plane, as seen in Figure 1.  The formulation is valid
as long as both the propagation distance and the aperture
size are greater than the wavelength of light.  These restric-
tions are based on the boundary conditions of the Rayleigh-
Sommerfeld formulation, and the fact that the electric and
magnetic fields cannot be treated independently at the
boundaries of the aperture [2].

To compute the complex wave front at the observation
plane, we divide both the aperture plane and the observation
plane into gridded meshes.  The planes are commonly
meshed into NxN regions, where N is the number of mesh
points along the side of a square.  Using a direct integration
technique we have successfully shown results using the
Rayleigh-Sommerfeld method [3]. 

However, this direct integration method is computa-
tionally intensive.  For each point on the observation plane,
the sum of the entire aperture plane, with respect to the
observation point, is required.  In other words, for each of
the N2 points on the observation plane, all N2 points on the
aperture plane are summed.  Therefore, the computational
order of this direct integration algorithm is O(N4).

The Fraunhofer and Fresnel, or far and near field,
approximations are made from the Rayleigh-Sommerfeld
formulation.  With the far field assumptions, the wavefront
of the observation plane can be calculated by the Fourier
transform of the aperture plane [2].  This greatly reduces the
computational resources needed to solve the direct integra-
tion of the Rayleigh-Sommerfeld formulation. However, in
previous research [3], we have shown that these techniques
are not generally valid for optical micro-systems.  There-
fore, only the full scalar equations, without approximations,
will provide the validity and accuracy that is required for
optical propagation in micro-systems.

In the interest of reducing this computational load, we
look to recast the full Rayleigh-Sommerfeld formulation
using the angular spectrum technique, in order to take
advantage of the Fourier transform.

3   ANGULAR SPECTRUM OF LIGHT
As an alternative to direct integration over the surface

of the wavefront, the Rayleigh-Sommerfeld formulation can
be solved using a technique that is similar to solving linear,
space invariant systems with the use of a Fourier transform.
In this optical case, we use an angular transform to identify
the components of the angular spectrum, which are plane
waves traveling in different directions away from the sur-
face [2].  By using the Fourier transform we reduce the com-
plex optical wavefront into a set of simple exponential
functions, plane waves.  This technique is valid for centered
parallel planes separated by a distance z, therefore, the aper-
ture and observation coordinates are the same: ξ =x and
η=y.  In this discussion, we use the coordinates (x,y,z).

The complex wave function U(x,y,0) has a 2D Fourier
transform in terms of angular frequencies, vx and vy.

where,  .

sin(θx) and sin(θy) are the directional cosines of the
plane wave propagating from the origin of the coordinate
system.

The inverse Fourier transform is:

 

In the above equations, A is the complex amplitude of
the plane wave decomposition defined by the specific angu-
lar frequencies.

To propagate the complex wave function, U(x,y,0) to a
parallel plane, U(x,y,z), the complex amplitude is multiplied
by a phase term, β.  β is computed by satisfying the Helm-
hotz equation  [2].  This results in:

       

This phase term describes the distance that each of the
plane waves travels due to the propagation between the par-
allel plates. Therefore, the wave function after propagation
can be solved with the following inverse Fourier transform:

 

It is interesting to note that the above equation is simply
the convolution of two functions.  The first function is the
input complex wave function, and the second is the propaga-
tion effect. 

Removing the restrictions of only propagating between
parallel planes sharing a common center has been the goal
of recent research.  Tommasi and Bianco have determined
how to propagate to a plane that is tilted with respect to ini-
tial plane [5].  Delen and Hooker have determined a way to
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Figure 1:  Aperture and Observation Coordinate System
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allow offsets in the observation plane [1].  We summarize
these two methods next.

For arbitrary angles between a normal plane, U(ξ,η,ζ ),
and a tilted plane, U(x,y,z), a remapping of the normal
plane’s spatial frequencies into the tilted plane’s spatial fre-
quencies is required.  This mapping is possible since the
phase accumulation term does not change when the waves
propagate to an observation plane not normal to the aperture
plane.  It can be found that the rotational matrix, M, used to
relate coordinate positions (ξ,η,ζ ) to (x,y,z), can also be
used to relate spatial frequencies [5]:

For an observation plane whose center is offset from the
propagation axis of the aperture plane, the Fourier shifting
theorem can be used to solve for the complex wave function
[1].  The coordinate systems of the aperture, (ξ,η,ζ ), and
observation plane, (x,y,z), need to be related by:

With this relation between the offset of the coordinate
systems, the function for free-space propagation between
offset planes is:

 where, 

In summary, the angular spectrum technique for model-
ing propagation between the aperture and observation plane
is implemented by the following.  First, the forward Fourier
transform is applied to the aperture surface.  This is then
multiplied by the propagation phase term.  If tilts are
present, the remapping of spatial frequencies occurs.  If off-
sets between the planes occur, then the shifting theorem is
applied.  Finally, the inverse Fourier transform is applied,
and the complex wavefront on the surface of the observation
plane is obtained.

The advantage of using the angular spectrum to model
light propagation is that the method is based on Fourier
transforms.  In CAD tools, the Fourier transform can be
implemented by one of the numerous Fast Fourier Trans-
form (FFT) techniques [4]. The computational order of a 2D
FFT is O(N2log2N), much faster than O(N4) for the direct
integration method.  We show this speed increase later
through example.

Like the direct integration technique, the FFT technique
requires the aperture and observation planes to be dis-
cretized into NxN meshes, where N is the number of mesh
points on the side of the plane.  Equal spacing meshing is
required, and for ease of the FFT algorithm, a power of 2 is
suggested for the number of mesh points. In this discussion,
we assume that the aperture and observation planes are
meshed with the same N, however, this is not a requirement.

Choosing the size and resolution of the mesh is critical
for accuracy and validity of the angular spectrum method.
For accurate results, the observation plane needs to have
sufficient zero padding around the optical waveform, since
the edges of the computation window act as reflectors.  If
significant optical power reflects off the wall, interference
between the propagating beam and these reflections can
occur, resulting in inaccurate simulations.  The resolution of
the aperture and observation plane meshing should be at
least λ/2 to ensure plane waves propagating from aperture to
observation plane in a complete half circle, that is, between
90 and -90 degrees [5].

4  SIMULATIONS
To examine the speed-up of using the angular spectrum

method, compared to direct integration, we simulate a Gaus-
sian beam propagating in free-space using both methods. In
these simulations, a 5 µm (diameter) Gaussian shaped beam
with a wavelength of 1550 nm propagates 20 µm to a 10 µm
square detector, as seen in Figure 2.  Note that at 20 µm this
system is in the “near-near” field, requiring the calculation
of the complete Rayleigh-Sommerfeld formulation for accu-
rate modeling. Simulation results, in terms of total computa-
tion time and percent difference of power detected on the
detector compared with the N=512 “base case”, are reported
in the following table. 

To show system level simulations, we perform a tran-
sient simulation of an absorbing screen moving in front of a
propagating Gaussian beam.  This results in the beam being
clipped by various amounts.  This moving screen example is
similar to a mirror moving in an optical MEM switch.  As
the mirror switches optical power from one state to the
other, the intermediate optical state and switching time can
effect the success of the switch.  In this example, the same 5
µm Gaussian source is used as in the previous example and
N=256.  The light propagates to an observation plane 50 µm
from the source.  A system diagram, viewed from the top,
with dimensions are shown in Figure 3.  Again, with these
small system dimensions, the full Rayleigh-Sommerfeld for-
mulation is required for accurate simulation.
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Figure 2:  Gaussian Propagation Example System
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* Run on dual 1GHz processors running Linux  with 2GB of RAM

N (mesh side) 32 64 128 256 512

Computation (sec) 0.03551 0.1067 0.2744 1.8886 4.9675
% Power Error 0.13% 0.03% 0.01% 0.00% 0.00%

Computation (sec) 1.8134 29.3992 455.841 7080 116480
% Power Error 4.62% 0.97% 1.19% 0.14% 0.00%

Angular Spectrum (FFT)

Direct Integration (Gaussian Quadrature)



Simulation results of the light striking the observation
plane for four clipping cases in the transient simulation are
presented in Figure 4.  The figure includes 20x20 µm inten-
sity contours on the observation plane and also a diagram of
the screen position in relation to the Gaussian beam.  Obvi-
ously, power is lost when the beam is clipped.  However, it
is interesting to note the shape of the Gaussian beam as the
beam is clipped.  As the beam is slightly clipped, the propa-
gating beam still appears to be Gaussian.  At small clipping
cases, the beam deforms, as the beam diffracts around the
screen.  In larger clipped cases, the direction of the Gaussian
beam appears to change as the center of the beam moves
off-axis.

5  SUMMARY AND FUTURE WORK
In this paper, we have demonstrated a promising optical

propagation technique that can greatly speed-up simulation
of optical micro-systems.  We have shown how to achieve
full scalar diffraction with the use of a FFT, by using an
angular spectrum.  This reduces an O(N4) direct integration
problem to O(N2log2N).  With the angular spectrum method
used for the full Rayleigh-Sommerfeld formulation, we can
achieve the computational speed of the far field approxima-
tion, without the need of any approximations.  This tech-
nique has been implemented into our system-level CAD
tool, allowing us to achieve interactive CAD development
and simulation of complex optical MEM systems.

However, even with an efficient optical propagation
model in our system-level CAD tool, microsystems with
large arrays of optical beams is difficult to simulate, since

the entire optical wavefront surface is required to be
meshed.  This leads to a large value of N and large memory
requirements.  Therefore, high-level optical propagation
methods, such as 1D Gaussian beam propagation, are
advantageous for system-level modeling.  However, Gauss-
ian models can not support the diffraction and clipping com-
mon in microsystems.  As presented in the last example, we
can characterize diffracted and clipped Gaussian beams with
our fast optical propagation model.  Our plans are to use
these kind of results and extract the complex optical wave-
front into a higher-level optical model composed of circular
and elliptical Gaussian beams, or a more complex represen-
tation with multiple Gaussian beams, and use this hybrid
technique for large system simulations.
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Figure 3:  Moving Screen Example System
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Figure 4:  Intensity Contours of Clipped Gaussian Beam
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