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ABSTRACT

Electrostatically actuated microstructures are widely
used in microelectromechanical systems (MEMS). Com-
putational analysis of electrostatic MEMS requires a
self-consistent solution of the interior elastic domain and
the exterior electrostatic domain. This paper proposes
an efficient approach to carry out the dynamic analysis
of electrostatic MEMS structures. The approach em-
ploys a meshless Finite Cloud Method (FCM) to solve
the interior mechanical domain of the structures and
a scattered point Boundary Cloud Method (BCM) to
solve the exterior electrostatic domain. Lagrangian de-
scriptions are used in both mechanical and electrostatic
analyses. The electrostatic forces and mechanical de-
formations are all computed on the undeformed con-
figuration of the structures. The approach provides an
efficient computational tool for dynamic analysis of elec-
trostatic MEM devices.
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1 INTRODUCTION

Computational analysis of electrostatic MEMS re-
quires a self-consistent solution of the coupled interior
mechanical domain and the exterior electrostatic do-
main [1]. Conventional methods for coupled domain
analysis, such as FEM/BEM, require mesh generation,
mesh compatibility, re-meshing and interpolation of so-
lution between the domains. Mesh generation can be
difficult and time consuming for complex geometries.
Furthermore, mesh distortion can occur for microme-
chanical structures that undergo large deformations. To
overcome all these difficulties, we propose an efficient ap-
proach to perform static and dynamic analysis of elec-
trostatically actuated MEMS.

The primary contributions of the paper are as fol-
lows: (1) Our approach employs a meshless Finite Cloud
Method (FCM)[2,3] to solve the interior structural do-
main. The Finite Cloud Method is a true meshless
method in which only points are needed to cover the
structural domain and no connectivity information a-
mong the points is required. This method completely

eliminates the meshing process and radically simplifies
the analysis procedure. (2) A Boundary Cloud Method
(BCM) [4] is used to analyze the exterior electrostatic
domain to compute the electrostatic forces acting on the
surface of the structures. The BCM utilizes a meshless
interpolation technique and a cell based integration. Be-
sides the flexibility of the cell integration, the BCM is an
excellent match to the FCM for coupled domain anal-
ysis since both of them have meshless interpolations.
(3) A Lagrangian description [5] of the boundary inte-
gral equation is developed and implemented with BCM.
Typically, the mechanical analysis is performed by a
Lagrangian approach using the undeformed position of
the structures. However, the electrostatic analysis is
performed by using the deformed position of the con-
ductors. The Lagrangian description maps the electro-
static analysis to the undeformed position of the con-
ductors. Thus, the electrostatic forces and mechanical
deformations are all computed on the undeformed con-
figuration of the structures. The Lagrangian description
eliminates the requirement of geometry updates and re-
computation of the interpolation functions.

2 ELECTRO-MECHANICAL
ANALYSIS

Electrostatically actuated microstructures can un-
dergo large deformations for certain geometric configu-
rations and applied voltages. In this paper, we perform
2-D geometrically nonlinear analysis of microstructures.
For electro-mechanical analysis, the transient governing
equations for an elastic body using a Lagrangian de-
scription are given by [6]

poi =V - (FS) in  Q (1)
u=G in T, (2)
P-N=H in Ty (3)
uli=0 = Go in 4)
Ui=0 = Vo in  Q (5)

where F is the deformation gradient, u, & and i are the
displacement, velocity and acceleration vectors, respec-
tively, N is the unit outward normal vector in the ini-
tial configuration, S is the second Piola-Kirchhoff stress,
G is the prescribed displacement, Gg and Vg are the



initial displacement and velocity, respectively, H is the
electrostatic pressure acting on the surface of the struc-
tures and P is the first Piola-Kirchhoff stress tensor.

A Newmark scheme with an implicit trapezoidal rule
is used for solving the dynamic problem of the nonlin-
ear elastic domain. The flow chart for dynamic electro-
mechanical analysis is shown in Figure 1.
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Figure 1: Flow chart for the dynamic electro-mechanical
analysis.

3 FCM FOR MECHANICAL
ANALYSIS

The meshless Finite Cloud Method (FCM) [2,3] uses
a fixed kernel approximation to construct the interpola-
tion functions and a point collocation technique to dis-
cretize the governing partial differential equations. In a
2-D fixed kernel approach, an approximation u®(x,y) to
an unknown u(z,y) is given by

U’a(xay) :/QC(wﬂyawk_sayk_t)(b(wk_sayk_t)u(s7t)d8dt

(6)
where C(z,y,z, — s,yr — t) is the correction function
which is given by

C(a:,y,a:k — S5 Yk — t) = PT(mk — S5 Yk — t)C(:L’,y) (7)

¢ is the kernel function which is usually taken as a cubic
spline or a Gaussian function and P” = {p,ps,...,pm}
is an m x 1 vector of basis functions. In this paper, 2-
D quadratic basis PT(z,y) = [1,z,y, 2%, 7y, y?] is used.
C(z,y) are the unknown correction function coefficients
computed by satisfying the consistency conditions (see
[2,3] for details). The discrete form of the approximation

u®(z,y) is given by

NP
u®(z,y) = > Nr(z,y)is (8)
I=1

where 47 is the nodal parameter for node I, and Ny(z,y)
is the fixed kernel interpolation function (see [2,3] for
details). The derivatives of the unknown u are approxi-
mated by

out(z,y) <= ONi(z,y) .
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In electro-mechanical analysis, the displacements » and
v and their derivatives are approximated by using Eq.
(8-10). Substituting the approximations into Eq. (1),
one gets a non-linear system of equations

fj(’al,’ag,...,ﬂNp;ﬁl,’ﬁg,...,ﬁNp) =0 ] = 1,2 (11)

The resultant non-linear system is solved by using a
Newton’s method. Boundary conditions are enforced
on the boundary points where Dirichlet or Neumann
boundary conditions are specified. The governing equa-
tions for such boundary points are replaced by the cor-
responding boundary conditions.

4 LAGRANGIAN ELECTROSTATICS

When electrostatic potentials are applied on micro-
structures, electrostatic forces are generated on the sur-
faces of the microstructures. The surface charge density
on the structure needs to be computed to obtain the
electrostatic forces. The 2D governing equation for elec-
trostatic analysis can be written in a boundary integral
form as [7]

o) = [ “Gaold, +C  (12)

dw

/ o(q)dv, = Cr (13)
[749)

where € is the dielectric constant of the medium, p is
the source point, ¢ is the field point which moves along
the boundary of the conductors and G is the Green’s
function. In two dimensions, G(p,q) = In|p — q|/2m,
where |p — ¢| is the distance between the source point
p and the field point gq. C7 is the total charge of the
system and C'is an unknown variable which can be used
to compute the potential at infinity.

Equations (12) and (13) are defined in the deformed
configuration of the conductors, i.e., the surface charge
density is computed by solving the boundary integral
equations on the deformed geometry of the conductors.



We refer to this approach as the deformed configura-
tion approach. The need to update the geometry of
the structures in the deformed configuration approach
presents several difficulties (see [5] for details). In this
paper, we employ a Lagrangian approach [5] to compute
the surface charge density in the undeformed configura-
tion of the conductors. In the Lagrangian approach, the
boundary integral equations, Eq.(12-13), can be rewrit-
ten as

$0(P) = | GO(P).d@)olal@)

[T(Q)-C(QTQ)>dlg+C  (14)
/d (@) [T(Q)- C@QTQN dTg =Cr  (15)

where P and @ are the source and field points in the ini-
tial configuration corresponding to the source and field
points p and ¢ in the deformed configuration, T(Q) is
the tangential unit vector at field point ) and C(Q) is
the Green deformation tensor.

5 BCM FOR ELECTROSTATIC
ANALYSIS

In this paper, we employ a boundary cloud method
to solve the Lagrangian description of the electrostatic
governing equations (Eq.(14-15)). In a boundary cloud
method, the surface of the domain is discretized into
scattered points. The points can be sprinkled randomly
covering the boundary of the domain. Interpolation
functions are constructed by centering a weighting func-
tion at each point or node. For the electro-mechanical
problem, the potential ¢ is prescribed on the structures.
The unknown surface charge density o in the vicinity of
the point ¢ is approximated by a truncated Hermite-type
interpolation[4]

U(Z’,y) = pT(x)y)at (16)

where p is the base interpolating polynomial (see section
3) and a; is the unknown coefficient vector for point
t. For a point ¢, the unknown coefficient vector a; is
computed by using a least-squares approach (see [4] for
details). The discrete form of the truncated Hermite
approximation for the unknowns is given by

NP
U(l‘,y) = Zﬁl(may)&l (17)
I=1

The boundary of the structure is discretized into cells for
integration purpose. Each cell contains a certain num-
ber of nodes and the number of nodes can vary from
cell to cell. Different from an element or a panel in
boundary-element methods, the cell can be of any shape
or size and the only restriction is that the union of all

the cells equal the boundary of the domain. Assum-
ing that the boundary is discretized into NC' cells and
substituting the truncated Hermite-type approximation
for the unknown charge density, the boundary integral
equation for the electrostatic problem given in Eq. (14-
15) can be rewritten in a matrix form as

M = ¢ (18)

where M is an (NC+1) x(NC+1) coefficient matrix and
¢ and & are (NC + 1) x 1 right hand side and unknown
vector, respectively. By substituting the potential on
the conductors and the total charge into Eq. (18), the
surface charge density can be computed from Eq. (17)
and Eq. (18).

6 NUMERICAL RESULTS

The first example is the static analysis of a micro-
mirror structure. Figure 2 shows the surface charge
density on the electrodes when a potential of 40 volts
is applied. The peak rotation of the mirror structure as
a function of the applied voltage is shown in Figure 3.

In the second example, dynamic behavior of a can-
tilever beam and a fixed-fixed beam is analyzed. The ge-
ometry of the cantilever and fixed-fixed beams is: 80um
long, 0.5um thick and 10pum wide. The gap is 0.7um.
The Young’s modulus of the beams is 169 G Pa, the den-
sity of the beams is 2331 kg/m? and the Poisson ratio
is 0.3. In the cantilever beam case, the pull-in voltage
is 2.40V from the quasi-static analysis (Figure 4) and is
2.18V in the dynamic analysis (Figure 5). The difference
is about 9%. In the fixed-fixed beam case, the pull-in
voltage is 18.0V from the quasi-static analysis (Figure 6)
and 16.4V from the dynamic analysis (Figure 7). The
difference is again about 9%. For a bias of 2.18V, the
transient deflection of the tip of the cantilever beam is
shown in Figure 5. A time step of 0.1 us is employed.
For a bias of 16.4V, the transient deflection of the cen-
ter of the fixed-fixed beam is shown in Figure 7. A time
step of 0.04 us is employed.

7 CONCLUSIONS

In summary, this paper presents a new numerical
approach to perform coupled electromechanical analysis.
The approach radically simplifies the coupled domain
analysis as mesh generation of complex micromechanical
structures is eliminated.
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Figure 2:  Electrostatic micro-mirror

structure.
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Figure 3: Pull-in analysis of electrostatic
micro-mirror.
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Figure 4: Static pull-in analysis of a Cantilever
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Figure 5: Dynamic pull-in analysis of a Can-

tilever switch.
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Figure 6: Static pull-in
switch.
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Figure 7: Dynamic pull-in analysis of a Fixed-

fixed switch.



