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ABSTRACT

Numerical micromagnetics is an essential tool to
optimize magnetic storage media, spin electronic devices,
such as MRAM and microsensors. The application of these
devices requires a profound knowledge of the reversal
mechanism. In nanostructured magnets the switching fields
and times which are in the order of pico- to nanoseconds
are controlled by the geometric shape of the magnets, the
intrinsic properties and the orientation and strength of the
applied field. The differences of the magnetization reversal
processes under various applied field profiles H(t), such as
sweep field, constant unidirectional field, pulsed field and
rotational field are studied using a 3D hybrid finite
element/boundary element micromagnetic model. Thermal
fluctuations, defects and other forms of disorder as well as
eddy currents occurring during the fast switching process
are not included in the simulations. The Gilbert equation of
motion is solved to investigate the reversal dynamics of
NiFe and Co nanoelements. The damping parameter α(H)
drastically influences the critical switching field and time.
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1 INTRODUCTION

Magnetic switching of mesoscopic and nanostructured
thin film elements, nanowires and particles becomes
increasingly important in magnetic storage, microsensors
and magneto electronic devices. Nanostructured magnetic
elements may be used as storage elements [1], field sensors
[2], or logic gates [3]. The functional behavior of these
devices depends on the domain configuration and the
reversal mechanism. Recently, the domain structure and the
switching processes of circular nanomagnets were
investigated using magnetic imaging and numerical
micromagnetics. Cowburn and co-workers [4] measured the
hysteresis loop of thin circular platelets. They reported a
decrease of the coercive field with decreasing diameter of
the nanomagnet. Detailed distribution of the magnetization
inside the nano- and mesoscopic structured elements is
obtained through numerical integration of the Landau-
Lifshitz equation. Our work applies numerical
micromagnetic modeling to investigate the switching
process of isolated and interacting circular, square, dot
shaped nanomagnets and nanowires. The results provide

details of the magnetization distribution during irreversible
switching depending on the shape and size of the elements.
With decreasing size of the magnetic structures, thermally
activated reversal process becomes significant. Thermally
induced reversal may influence the writing process as well
as the long-term stability of written bits in magnetic
recording.

2 MICROMAGNETIC FINITE ELEMENT
MODEL

We have used a 3D numerical micromagnetic model
with tetrahedral finite elements to study thin (10-20 nm)
square, rectangular and dot shaped structures with a length
or diameter of about 100-300 nm comparing the influence
of magnetocrystalline anisotropy on the switching behavior
(Fig.1). The reversal process of single-crystalline elements
is compared with granular elements with random
orientation of the grains. The granular thin film element is
modeled with columnar grains generated from Voronoi
polyhedrons. The polyhedral grains are discretized into
tetrahedral finite elements with a constant edge length
between 2.5 nm and 5 nm. Previous micromagnetic studies
[5] have shown that the results are independent of the mesh
size, if the finite element size is smaller than the exchange
length, which is determined, by the Neél or Bloch wall
parameters.

Figure 1: Finite element mesh of a circular dot shaped
nanoelement with 100 nm in diameter and 20 nm thickness
for an edge length of 5 nm. The surface mesh used for the

boundary element method is given as a wireframe.

The basic geometry of the granular thin film element is
shown in Fig.2. The thin, nanostructured square element
with dimensions of 100x100x10 nm3 consists of 100
irregular shaped grains with an average diameter of about
10 nm. For the simulations we used two sets of materials



parameters: The Ni80Fe20 nanoelement has the following
material properties: Js=1 T, K1=K2=0, A=13 pJ/m. The
polycrystalline Co square element consists whether of 3D
randomly oriented grains with uniaxial magnetocrystalline
anisotropy or of 2D textured grains with random orientation
of the easy axes within the film plane. For the simulations
the intrinsic bulk properties of hcp-Co were used (Js=1.76
T, K1=0.45 MJ/m3, K2=0.15 MJ/m3, A=13 pJ/m).

Figure 2: (a) Schematic granular structure of a square thin
film element of 100x100x10 nm3 consisting of 100 grains
with a grain size of about 10 nm. (b) Discretization into

tetrahedral finite elements used for the numerical
simulation of the switching behavior of randomly oriented

Co grains.

Three different external field profiles were used for the
simulations. In the first case a monotone, increasing
“sweep” field with constant sweep rate (2.0 Js/µ0 per ns)
was uniformly applied along the –y direction until complete
magnetization reversal took place. Second, a homogeneous
field was applied after rising the field from zero to h=0.1
and h=0.2 Js/µ0 (80 and 160 kA/m for NiFe and 140 and
280kA/m for Co) after 0.05 and 0.10 ns, respectively.
Third, in comparison a half cycle (0.05 ns) of a rotating
magnetic field with a frequency of 10 GHz was uniformly
applied in the (x,y)-plane.

The time evolution of the magnetization at each nodal
point of the finite element mesh was calculated using the
Gilbert equation of motion [6], which describes the physical
path of the magnetic polarization J towards equilibrium [7].

(1)

Figure 3: Damped gyromagnetic precession motion of a
single magnetic polarization vector J towards the effective

magnetic field Heff according to the Gilbert equation of
motion.

At each time step, which is in the order of fs, the
effective field term Heff include the applied field, the
exchange field, the magneto-crystalline anisotropy field and
the demagnetizing field. The effective field Heff is the
negative functional derivative of the total magnetic Gibb's
free energy Et of the system. The term γ0 is the
gyromagnetic ratio of the free electron spin and α  is the
damping constant. The first term on the right hand side of
equation (1) accounts for the gyromagnetic precession of
the magnetic polarization J, the second term arises from
viscous damping (Fig.3). At high damping the
magnetization rotates more or less directly towards the field
direction, as the second term is dominant. If the precession
term becomes dominant, the polarization precesses several
times around the field direction before it reaches
equilibrium. In order to apply various profiles for the
external field or study the effect a rotating external field,
the strength and direction of the external field is treated as a
continuous function of time. To solve the Gilbert equation
numerically the magnetic particle is divided in finite
elements. Our simulation model combines a hybrid finite
element/boundary element method for the magnetostatic
field calculation [8]. The scalar potential on every node
point of the finite element mesh is calculated. The
demagnetizing field, which contributes to the effective
field, is the negative derivative of the scalar potential. The
effective field Heff,k at the node point i of an irregular finite
element mesh can be approximated using the box scheme
for Vk→0 (Fig. 4)
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The discretization of the Gilbert equation leads to an
ordinary differential equation for every node for each
component. For the time integration of the Landau-Lifshitz-
Gilbert equation of motion a combination of a backward
differentiation formula method with the scaled
preconditioned incomplete generalized minimum residual
method was used [9,10].

Figure 4: Schematic representation of the volume Vk used
in the box scheme.

Previous micromagnetic simulations have shown that
the damping parameter α strongly influences the switching
time [11]. Shorter switching times are obtained at low
external field strength values (h < 0.5 Js/µ0). In the present
study the Gilbert damping parameter was kept constant to
α=0.1. Due to the small size, eddy currents are considered
to be small and therefore are neglected.

3 NUMERICAL RESULTS AND
DISCUSSION

The numerical simulations were performed for different
geometries and damping parameters. The magnetization
patterns of Fig.5 show the transient magnetization states
during switching of circular dot shaped Ni80Fe20 elements
with different diameters and thickness for a damping
parameter of α=1.00. First, a large field is applied to
saturate the nanolement. After reducing the field to zero the
dot relaxes toward equilibrium. To reduce the strayfield
energy the magnetization tends to be aligned parallel to the
surface. The external switching field is applied
instantaneously to the saturated state. The particle size has
strong influence on the switching time and switching
behavior. Although the single domain state has the lowest
energy in equilibrium the particle with a diameters larger
than 100 nm forms an inhomogeneous state during reversal.
The numerical simulations show that for small switching
fields inhomogeneous magnetization rotation processes are
dominant, whereas for a large field strength complex,
inhomogeneous reversal processes (small damping
parameter α) and nucleation and expansion of reversed
domains (large α ) are responsible for the different
switching behavior.

The influence of the uniaxial magneto-crystalline
anisotropy parallel to the external field direction leads to
reduced switching times. The switching time of a circular
Co dot is reduced to values less than 0.2 ns.

Figure 5: Transient magnetization states during
switching of Ni20Fe80 circular dots for α=1.00 with various

diameter and thickness (a) 55 nm diameter, 10 nm
thickness, (b) 110 nm diameter, 10 nm thickness (c) 110

nm, 15 nm thickness. The field strength was 8 kA/m.

Micromagnetic modeling of the magnetization reversal
process shows that the dynamics of the switching behavior
in a constant reversed field differs from the one in a rotating
field, especially at high frequencies. Reversal in the
unidirectional field proceeds by the nucleation and
propagation of end domains towards the center of the
element. The switching time strongly depends on the
Gilbert damping parameter α . Small values of α (≤ 0.1)
lead to shorter switching times at small field strength.
Materials with uniaxial anisotropy (Co), require larger field,
but exhibit shorter switching times.

Figure 6: (a) Incoherent magnetization rotation at t=0.07
ns inside the Co square element at Hext= 450 kA/m (h=0.32

Js/µ0). (b) Time evolution of the polarization during the
application of a rotating field at 10 GHz starting from the

+y-direction. α = 0.10.
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Under the influence of a constant, rotating field the
magnetization tries to follow the external field direction and
starts to rotate near the flat ends of the square reducing the
magnetostatic energy, followed by the reversal of the
center. In the case of very fast switching and small field
strength the magnetization of only small regions inside the
nanoelement is able to follow the external field direction.
Incoherent magnetization rotation occurs inside the square,
if the field strength is increased to 0.32 Js/µ0 at 10 GHz
(Fig.6a). This results for the Co dot with 100 nm diameter
in about 95% alignment of the polarization parallel to the
rotating field and a slight phase shift between the external
field and the total polarization vector (Fig.6b). The angle
between the rotating field vector and the total polarization
vector increases for large damping constant α =1.00.
Micromagnetic simulations of the magnetization reversal
show that the inhomogeneous rotation in a rotational field
also leads to partial flux-closure structures and therefore
facilitates the switching by reduced switching times.

Figure 7: Comparison of the time evolution of the
polarization inside the polycrystalline Co square during the
application of a unidirectional field and a rotating field at

10 GHz for Hext= 140 kA/m (h=0.1 Js/µ0) for α = 0.1.

Figure 8: Magnetization distribution within the granular Co
square during the switching process (<Jy>=0) in an

uniformly applied field for Hext=140 kA/m (h=0.1 Js/µ0)
occurring at t=0.27 ns.

Figure 7 shows that faster switching occurs in a granular
Co element of 100 x 100 nm2 containing 100 randomly
oriented grains, if a rotational field of 10 GHz and
Hext=0.10 Js/µ0 is applied in the (x,y) plane. A damping
parameter of α=0.1 was used in the numerical simulations.

4 CONCLUSIONS

In mesoscopic and nanostructured magnets the
switching fields and times that are in the order of pico- to
nanoseconds are controlled by the choice of the geometric
shape of the magnets, the intrinsic properties and the
orientation and strength of the applied field. Understanding
and controlling the magnetic switching dynamics of
magnetic particles is the major challenge for technological
applications. Micromagnetic modeling of the magnetization
reversal process of meso- and nanoscopic elements show
that the dynamics of the switching behavior in an
instantaneously applied, unidirectional field differs from the
one in a rotating field, especially at high frequencies.
Comparing the transient magnetization states during
reversal and the switching time of permalloy and Co
elements, faster switching is obtained in materials with
uniaxial anisotropy neglecting eddy current effects. The
shape and the Gilbert damping parameter determine the
critical switching field and time.
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