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ABSTRACT

We demonstrate an efficient numerical scheme for the
computation of the excitonic optical response of actual
GaAs/AlGaAs quantum wire structures including a large set
of relevant effects; structural, valence band-mixing,
dielectric and many-body effects can be accounted for.

The optical response of excitons within k.p envelope
function and Hartree-Fock approximation, are computed
with band-mixing effects by stream-lined finite element
techniques. The quantum-mechanical effects linked to the
wire symmetry are also explicitely taken into account for
the first time. A detailed comparison with relevant
experimental PLE results is made, and a good agreement is
obtained, including polarization anisotropy and binding
energies of all bright excitons (A1, B1, A2)

Keywords: Quantum wires, Excitons, Finite elements,
Polarization anisotropy, Hartree-Fock.

1 INTRODUCTION

Quantum nanostructures, that is to say very small
structures where quantum effects are important, have many
potential applications, particularly in semiconductor optical
devices. Quantum wire (QWR) structures are now attaining
excellent quality and have become a very interesting
“testbed” for one-dimensional (1D) physics.
Photoluminescence excitation (PLE) spectroscopy is a
unique probe of the linear optical properties of QWR’s
revealing in particular a strong polarization anisotropy and
many excited subbands in GaAs/AlGaAs V-shaped QWR’s
[1]. However a detailed analysis of the PLE, because of the
interplay of valence-band mixing and the actual QWR non-
trivial geometry, requires an extensive modelling effort.
Excitonic effects in this frame have been very difficult to
obtain, and we are aware of only one non-variationnal work
in QWR’s including band mixing [2]. Converged full
absorption spectra including higher excited subbands,
necessary to describe PLE spectra, remain however difficult
to obtain, because of the large size of the numerical
problem.

We demonstrate here an optimized numerical scheme
that allows to compute with moderate resources complete
PLE spectra, including also additionnal effects like dielec-

tric effects. With this scheme it will also be possible to
follow the evolution of the absorption spectra towards gain
with rising carrier density. Such absorption / gain spectra
are also essential for the understanding of QWR devices
like QWR LED’s, lasers and modulators [3], since many-
body effects give rise to a significant reduction of oscillator
strength at the band-edge in this case [4].

An originality of our work is also that good use is made
of the inherent low symmetry of most of the actually grown
structures today. A proper group-theoretical classification
with well-defined selection rules has been set-up [5],
allowing now to refer properly to the bright excitons of a Cs

QWR as the A1, B1, A2 excitons, active in the growth,
parallel and perpendicular polarizations respectively
(Fig.1). In addition the use of symmetry in the computation
allows for increased efficiency (memory/time/accuracy).

Some first results are presented for a well-known
structure for which excellent PLE spectra and transmission
electron micrograph (TEM) pictures are available [1]. The
agreement with experimental results, which is now obtained
without any free parameter is greatly improved and
definitely allows us to recognize more features in the
optical spectra.

2 NUMERICAL APPROACH

The typical V-shape of our QWRs is shown on Fig.1.
The contour is directly extracted from a TEM picture with
very good accuracy (pen accuracy!). The QWR is quite
symmetric, sufficiently enough to use this fact both for
calculation and for understanding the resulting selection
rules.
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Figure 1: Geometry of the QWR, taken from TEM,
(includes the vertical quantum well (VQW))



To obtain the absorption spectra we have chosen to
compute first the single-particle band-structure, then the
optical and Coulomb matrix elements and finally the optical
absorption including the effect of the many-body
interaction. This is a three-step approach allowing an easy
interpretation of the nature of the numerous peaks
appearing in the absorption spectra in terms of single
particule subbands, especially useful in the case of strong
confinement in quantum wires. All three steps are
integrated in the sense that they are directly formulated in
Fourier space along the QWR direction and in real space in
the other two. Moreover the first two steps use the same
finite elements on a common subgrid (the QWR region).

2.1 k.p band-structure

We use a simple effective mass approximation for the
electrons, and a four-band Luttinger model for the holes.
The details of our properly oriented Luttinger hamiltonian
(with respect to the crystal structure) have already been
given in [1,5]. To take into account the geometrical shape
of the QWR we use the finite element (FE) method which
we recommend over various other commonly used
approaches (finite differences and orthogonal expansions).
Unfortunately these reasons are two long to develop here. A
few other authors have also used the FE method in this
context.

We show on Fig. 2 the computed valence band-structure
corresponding to the profile shown on Fig.1 (C1 symmetry
group, quasi- Cs with one symmetry plane, see [5]). A
novelty in Fig.2 is that k=0 states are classified according to
the ZC group [5] and developped into conjugate bands. In
the Cs case the (010) quantization direction for spinors
allows to enforce in addition well-defined symmetries on
each envelope function component [5] (also outside the
Gamma point). All the true crossings between 1E1/2 and
2E1/2 bands of the Cs group become slight anticrossings in
Fig.2 because the QWR symmetry is very slightly broken.
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Figure 2: Normal and conjugate bands of the QWR.

The electron subbands (not shown) are quite parabolic
and do not show any crossings/ anticrossings.

2.2 Coulomb matrix elements

The second step deals with the computation of the
following Coulomb matrix elements. Such matrix elements
can be expressed as
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where the wavefunctions have been calculated during
the first step. Dielectric effects, which have been shown to
be important as soon as a detailed comparison is required
(already in quantum wells [6]), have already been studied
by few authors [5,7]. They are included here by requiring
that  Gq(r,r’) is not the simple 1D-FT of the 1/(εr) bulk
interparticle Coulomb potential, but the solution of the
following Poisson equation:

∇ ∇( )−[ ] ( )=− −( )ε ε πδ( ) ( ) , ' 'r q r G rr r rq2 4 (2)

As we need to calculate a large number of Coulomb
matrix elements (here ~107, each of them being the 4-
dimensional spatial integral of Eq.(1)!) it is essential to
efficiently streamline (and intrinsically parallelize) their
computation. This is done in the following way. The
Poisson operator (2) is discretized with the same FEs on a
large circular grid (typically 130 nm radius) extending the
first QWR grid and is LU-decomposed only once for every
value of q (the momentum transfer). Instead of solving for
the Green function of the Coulomb problem we collect all
the required products of wavefunctions as a large set of
right hand sides (RHSs) which can be solved in parallel
using the LU decomposition. This procedure leads to a set
of solutions that can be interpreted as the Coulomb
potential generated by the set of wavefunction products
involving r’ in (2) (these products may become complex for
a non-real hamiltonian!). Finally a large rectangular matrix-
matrix multiplication with the original set of RHS
wavefunction products (performed on the smaller QWR
grid only) leads in one step all the possible respective
Coulomb matrix elements.

The advantages of this direct algorithm are numerous:
1) it is intrinsically parallellized and optimized routines like
widespread BLAS/LAPACK can be used throughout, 2) the
Poisson problem is banded and easy to treat, 3) the spatial
variation of the dielectric constant is trivial to take into
account, 4) it is easy to rise up the order of the finite-
elements and gain in accuracy/time (as from trapezoidal to
Simpson inetgration), 5) explicit integrations are avoided,
6) no need to insert costy numerical interpolations.

Special care must however be paid to the slowly
decreasing Coulomb potentials at the outer border of the



large grid. For each RHS we enforced the correct
asymptotic behavior via the Dirichlet boundary value set by
the product of the respective “integrated effective RHS
charge” and a typical q-dependent “asymptotic” value. The
former is computed over the QWR grid using the mass
matrix, and is not necessarily equal to the electron charge
(e.g. it is zero in the case of an odd wavefunction product).
The latter have been consistently chosen to correspond to
the 1D-Discrete Fourier Transformation (DFT) of the
asymptotic 1/r Coulomb potential at the finite large radius
of the outer grid. We took care to remain fully consistent in
k-space in the sense of the DFT. This is because with a
normal FT (or a Fourier series) the q-dependent Coulomb
matrix elements diverge when q tends to zero whilst in the
DFT they remain finite at q=0. When the k-discretization is
refined the DFT diverges consistently but it is never needed
to refine the discretization beyond a scale set by the exciton
radius, so the procedure is practical. This last point is
extremely simple to implement.

2.3 Absorption spectra

To compute the optical absorption one then needs to get
all the microscopic polarizations corresponding to the
quantum expectation values p b ak
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 (see [8]).

For a weak stationnary light field probing the linear
optical absorption the microscopic polarization obey a large
set of linear equations with three inhomogeneous RHS
(proportional to the dipole matrix elements) corresponding
to possible linear light polarizations (for more details see
[8]). This large set must be repeatedly solved for every
value of frequency to get a full linear absorption spectra.
The following procedure provided nearly two orders of
magnitude with respect to a sequence of direct solutions: 1)
solve the first spectral point with a direct method, 2) for the
subsequent point inject the previous solution in an iterative
solver (preconditioned conjugate gradient).

Symmetrized Hartree-Fock terms linear in density have
also been easily implemented in this scheme [8] and will
allow a future study of high-density 1D plasmas.

2.4 Implementation and performance

Our code is written is Fortran 90, calling only fairly
standard libraries (BLAS, LAPACK, ARPACK, NAG,
Numerical Recipes). Presently only simple linear basis
functions on a set (nx x ny) of irregular quadrilateral finite
elements are implemented.

We use the following numerical parameters: 6 electron
and 8 hole subbands are taken into account. The real space
nx x ny grid is 28 x 80 and adapted to the TEM picture of
the full QWR (10 intervals span the QWR thickness, the
lateral width is 63 nm). In k-space 26 intervals up to 0.5
nm-1 are used. The banded eigenproblem is 2240 x 57 for
electrons, and 8532 x 231 for holes. The Poisson grid
involves 6549 nodes in a circle of radius 130 nm. The
Coulomb matrix rank is 4452 and solved 1200 times (three

polarization-dependent absorption spectra, each 400
points). Here slight departures from perfect symmetry were
taken into account, however they do not result in any
significant effect in the absorption spectra (the results will
be interpreted as if mirror symmetry was perfect). A
consequence is that the performances can be further raised
by a factor 3-4 when using symmetry (used in extensive
parametric studies).

For this typical problem size the total memory needed is
< 550 MB at any time during the computation (about 1/3
could still easily be gained). The CPU time requirements
are: 1) band-structure: ~7 min., 2) Coulomb matrix
elements: ~6.25 hours, 3) absorption spectrum: <3 hours.

These figures were obtained on an old Unix DEC-Alpha
Workstation. On a modern MacIntosh G4 Laptop (500
MHz, OS-X, Absoft compiler) the time requirements are
only twice, for an undisturbing background computation.

3 OPTICAL SPECTROSCOPY

Our main goal is to interpret in detail high quality
optical PLE spectra like shown in Fig.3 (8.8 nm thick QWR
of Fig.1, called “2.5 nm nominal” in [1b]). Such spectra
have not been ever compared with a calculation
incorporating both band-mixing and the Coulomb
interaction. Dipolar matrix elements were first used to
understand them [1], then further free-carrier (FC-) optical
spectra (i.e. without Coulomb, but with full VB non-
parabolicity and k-dependent matrix elements) [9].
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Figure 3: Experimental PLE spectra of the QWR. The
triangles correspond to the calculated peaks (Fig.4).

On Fig.4 we display the calculated excitonic spectra and
on Fig.5 the corresponding FC-spectra (exactly same
parameters). In both cases the homogeneous broadening
was deliberately kept quite small (3 meV HWHM), in order
to be able to identify spectroscopic details. We should
stress that these calculated spectra do not involve any free
physical parameters (all parameters are given in Ref. [1b]).
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Figure 4: Calculated absorption with excitonic effects.
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Figure 5: Calculated absorption without excitonic effects
(same parameters as in Fig.4).

Many features of Fig.3 are accounted for in Fig.4: 1) a
rigid excitonic energy shifts was previously introduced as
the only ad-hoc free parameter [1,9], it is now unnecessary
and the e1-h1 binding energy can be estimated to be 14.5
meV, of the order of 4 times the bulk Rydberg (the ideal 2D
value), 2) the sequence of oscillator strengths (affected by
excitonic enhancement) is much closer to the experiments
than the FC spectra, including the polarization anisotropy
(especially the flattening above e2-h2 in perpendicular
polarization (A2 exciton)), 3) The typical high energy tail of
each peak in Fig.5 (1D density of states effect) is
suppressed in agreement with Fig.3, 4) the weaker peak in
parallel polarisation (B1 exciton) between the e2-h2 and e3-
h3 transitions that was not yet identified is now attributed to
an e2-h6 non-diagonal transition, 5) The peak between e1-
h1 and e2-h2 which was identified as a light-hole-like e1-h6
transition in Fig.3 and 5 appears now to be composed of

two narrower peaks in Fig.4. The wider spectral width in
Fig.3 and its average position let us conjecture that two
peaks may indeed be resolved in samples with reduced
inhomogeneous broadening. Since only a single peak
appears in the FC-spectra (also in the dipolar matrix
element spectra) a further analysis is required to check
whether one of the two peak can be attributed to a “2s-like”
resonance (“2s-like”: because there is no rotationnal
symmetry) of the e1-h1 excitons.

Three other remarks are worth making: 1) the e1-h2 first
peak in the A1 exciton spectrum is also enhanced by
excitonic correlations and compares now better with [10],
2) Varying the number of subbands demonstrate that the
transfer of oscillator strength from higher subbands to the
lowest optical transitions is quite important, 3) the ratio of
the subband separation e1-h1/e2-h2 is slightly larger in the
calculation by a few meV (see Figs.3,4). This interesting
discrepancy needs to be investigated further.

4 CONCLUSIONS

The development of a large code solving for excitons in
quantum wires has certainly been a rewarding undertaking
which allowed to improve our understanding of the
complex optical spectra of QWRs. We have also addressed
computationnal efficiency issues (memory/ time/ accuracy).

Still more work must be done to reach in QWRs the
status of the best excitonic calculations made in quantum
wells [6,11]. In addition to adding more bands and
converge even better in k-space we plan to include in the
near future the self-energy terms linked with image charges,
as well as the non-parabolicity of the conduction band.
These effects all start to become important at the level of
detailed comparison now pursued. We also plan to
investigate the polarization-dependent Hartree-Fock terms
that are linear in density in continuing studies. From the
computational point of view second order finite elements
will be worth introducing.
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