A Compact Model for Flowrate and Pressure Computation in Micro-fluidic Devices

R. Qiao and N. R. Aluru
Beckman Institute for Advanced Science and Technology
University of Illinois at Urbana-Champaign
405 N Mathews Avenue, Urbana, IL 61801

ABSTRACT

A compact model to compute flowrate and pressure in
micro-fluidic devices is presented. The micro-fluidic flow
can be driven by either an applied electric field or by a
pressure gradient or both. In the proposed compact model,
the complex fluidic network is simplified by using an
electrical circuit. The compact model can predict the
flowrate, pressure distribution and other basic
characteristics in microfluidic channels quickly with good
accuracy when compared to detailed numerical simulations.
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1 INTRODUCTION

Integrated microfluidic systems with a complex network
of fluidic channels are routinely used for chemical and
biological analysis and sensing. The use of detailed
numerical simulations based on partial-differential
equations can be very expensive and prohibitive for
microfluidic system designers. Compact models, which are
simplified models - yet accurate enough to capture the basic
physical characteristics, can be enormously useful for
system designers to quickly evaluate new design concepts.
Once the design concept is selected, detailed numerical
simulations can be performed to obtain extensive and more
accurate flow characteristics.

In this paper, we report on the development of a
compact model for microfluidic devices that use electric
field and/or pressure gradient as driving forces. The
compact model also accounts for the pressure generated in
micro-fluidic channels because of non-uniform {-potential
on the channel walls. Numerical results indicate that the
compact model can be several orders of magnitude faster
compared to detailed numerical simulations without
sacrificing too much accuracy.

2 COMPACT MODEL DEVELOPMENT

The derivation of a compact model for an electric field
driven fluid flow is described in this section. The approach
can be extended in a straight-forward manner when the
flow is driven by other type of forces e.g. a pressure
gradient or a combined pressure gradient and an electrical

field. The compact model is composed of two parts -
namely, the electrical part and the fluidic part.

2.1 Compact Model: Electrical Part

For micro-fluidic devices that rely on electrokinetic
force for fluid flow, the electric field must be solved first.
In the case of an electroosmotic flow, the potential field
due to an applied potential can be computed by solving the
Laplace equation

0°p =0 (1)

where ® is potential. To solve equation (1) on a complex
geometry, the network of channels is represented by a
number of straight channels and each straight channel is
further represented as a resistor. For example, for the
fluidic network shown in Figure 1, the electrical part of the
compact model is represented by the circuit shown in
Figure 2. Assuming that the potential drops linearly in
each straight channel and that the channel walls are well-
insulated, the applied potential field in the entire network
is obtained by solving the circuit problem. In most micro-
fluidic devices, the channel width is much smaller
compared to the length of the channel. Hence, the
assumption employed above is justified in most part of the
fluidic network, except near channel intersections.

2.2 Compact Model: Fluidic Part

The flow field in micro-fluidic devices is usually
governed by the Stokes equation [1]

HO’u—-OP+F =0 )
F =e0do0°Y 3)

where W is the potential induced by the {-potential on the
channel walls. The Stokes equation can be greatly
simplified by considering the flow characteristics in micro-
fluidic channels. In the compact model development, we
assume that (1) the flow is fully developed and (2) the
electrokinetic force term, stated in equation (3), can be
represented by a slip velocity at the wall given by the
Helmbholtz-Smoluchowski equation [2]

Uy, =—€C/P0d (4)



The first assumption is justified because the channel
length is usually much longer compared to the channel
width and the flow is fully developed in most part of the
fluidic network. The second assumption is justified because
typically the electrokinetic force exists only within a short
distance (a few nanometers) from the wall. Based on these
assumptions, the velocity profile across the channel is a
function of only the slip velocity and the pressure gradient
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streamwise

where x denotes the stream-wise direction of the channel, y
denotes the transverse direction across the channel and # is
the channel width. With u;, easily obtained from equation
(4), the problem is reduced to computing the pressure
distribution in the fluidic network. Usually pressure is
strongly coupled with the velocity in an incompressible
flow, however, for the Stokes flow, one can obtain a
Poisson equation for the pressure after taking the
divergence of equation (2):

0°P=0[F (6)

Equation (6) decouples the solution of pressure from the
solution of velocity. Equation (6) implies that pressure in a
fluidic system can arise from two sources - the first is due
to the applied pressure at the entrance and exit of the
channel and the second is the induced pressure due to the
non-uniform electrokinetic force that arises when the (-
potential on the channel wall is non-uniform. When the
electrokinetic force is divergence free, the only source of
pressure is from boundary condition and equation (6) is
reduced to a Laplace equation.

For the fluidic network shown in Figure 1, the pressure
at all inlets and outlets is set to zero. However, there is a
sudden change of {-potential at point E i.e. {-potential on
all the channel walls to the left of E is ; and the {-potential
on all the channel walls to the right of E is {,. Thus, the
solution of pressure is governed by the Laplace equation in
most of the channel region except near point E. It is
important to point out that the variation of the pressure
across the channel is ignored as the pressure is also
assumed to drop linearly within each segment of the
channel system.

To compute the pressure in the entire network shown in
Figure 1, a circuit model as shown in Figure 3 is set-up.
The constant current source, Py, at point E, accounts for
the pressure induced due to the change in the wall
(—potential at point E. Py, is computed by using mass
conservation principle. Since we assume that the pressure is
linearly distributed in channel regions A-E and E-B, the
velocity profile across these two channel regions can be
expressed as:
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The pressure in the channel A-E-B can be expressed
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Mass balance at point E yields an analytical expression
for Py, at that point:

Rs‘ource = f(uslip,AE’uslip,EB ’hAE’hEB ’PA ’PE ’PB) (10)

It is straightforward to set up a node equation for each
intersection point between channels. Once the pressure at
the points A, B, C, D and E is obtained, the pressure
gradient along the channel, the velocity profile and the
flow-rate at any cross-section (except near the
intersections) can be computed analytically by using
equations (5), (7) and (8).

3 RESULTS AND DISCUSSION

Both full simulation (two-dimensional) and compact
model analyses have been done for the fluidic network
shown in Figure 1. The channel width (W) is taken to be
50nm and two cases for the Debye length (Ap) are
investigated: Ap = 1.25nm and Ap = 2.5nm. A potential of
0.1 V is applied at ports 0, 1, and 2 and a potential of
0.06V is applied at port 3. All other ports are grounded.
The pressure at all channel entrances is set to zero. The (-
potential on the channel walls on the left half (all channel
walls to the left of the dashed line in Figure 1) and on the
right half of the fluidic network is -10mV and -30mV,
respectively.

The full simulation involves the solution of Laplace
equation for the applied potential field, the Poisson-
Boltzmann equation for the {-potential field and the Stokes
and the continuity equations for fluid flow. The compact
model involves only the solution of the circuit problem
shown in Figure 2 and Figure 3. A typical full simulation
takes about 15 minutes while the compact model needs
only a few microseconds. Figure 4 shows a comparison of
the pressure gradient along line O-4-C-5. It is clear that
the compact model is able to predict the pressure gradient
very well in most parts of the channel except for positions
near the intersection of two channels. This is because the
assumptions made in the compact model are no longer
valid near the intersections. Figure 5 shows the scaled



error in the flow-rate at different positions of the network
and the compact model provides a solution that is within
8% accuracy when Ap/W is 5% and within 3% accuracy
when Ap/w is 2.5%. From Figure 4 and Figure 5, it can be
observed that the compact model gives better results when
the Ap/W ratio is small. This is because as the Ap/W ratio
decreases, the slip velocity model becomes more accurate.
The compact model proposed in this paper can be expected
to provide better accuracy results for microfluidic networks
as Ap/W ratio is typically in the order of 10,

Figure 6 shows a schematic plot for a fluidic mixer.
Three types of fluids (A, B and C) are driven from
reservoirs 1, 2 and 3 to reservoir 4. Because of the different
fluid properties, the {-potential at channel walls is also
different as shown in Figure 6. A problem of practical
importance would be to investigate how the mixing ratio of
different fluids changes with the applied potential at
different reservoirs. Doing a full simulation for such a
problem would be very time-consuming, however, by using
the compact model developed here, the solution can be
obtained within a few seconds. Shown in Figure 7 is the
electrical circuit to compute the pressure in the fluidic
network. Figure 8 shows the mixing ratio of fluid A and
fluid B when the potential at reservoir 1 is varied and the
potential at reservoir 2 is fixed and the flowrate at location
Xc (see Figure 6) is fixed. The mixing ratio of fluid A to
fluid B is defined as the ratio of flowrate of fluid A at
location X, to flowrate of fluid B at location Xj. Observe
that the mixing ratio varies with the applied potential at
reservoir 1 and the mixing ratio can be negative for certain
applied voltages. A negative mixing ratio means that the
fluid is flowing into reservoir 2 instead of from reservoir 2.

Though the compact model developed here is based on
the assumption that the flow and potential is two-
dimensional, the development of a compact model for
three-dimensional flow and potential problems involves the
same steps detailed here.

4 CONCLUSION

A compact model to compute the flowrate and pressure
distribution in micro-fluidic devices is presented. The
compact model can analyze the flow rate and pressure
distribution in a fluidic network driven by electrokinetic
force, and/or applied and induced pressure. The results
obtained from the compact model are in good agreement
with full simulation results. Compared to the full
simulation, the compact model involves negligible
computational cost. Because the fluidic network is
represented as electrical circuit in the compact model, the
compact model can be easily integrated into readily
available circuit analysis software.
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Figure 1. A typical micro-fluidic channel system.
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Figure 2. A circuit model to compute the potential for
the channel system shown in Figure 1.
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Figure 3. A circuit model to compute the pressure
distribution for the channel system shown in Figure 1.
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Figure 4. Comparison of pressure gradient along
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Figure 5. Scaled error of flowrate computed by the compact
mode at positions shown in Figure 1
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Figure 6. Schematic view of a fluidic mixer. The dotted line

indicates the region where {-potential on channel wall is {,.
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Figure 7. Electrical circuit to compute pressure in
the fluidic network shown in Figure 6
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Figure 8. Variation of mixing ratio of fluid A and fluid

B with different applied potential at reservoir 1.



