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ABSTRACT 

This paper presents compact, physically-based 
electrothermal models for direct as well as indirect bandgap 
tunneling processes in pn-junctions for use in network 
simulators (e.g. Saber or VHDL-A).  The model for indirect 
tunneling has been validated using a 3.3V Si Zener diode 
(1N4728). Self-heating effects have also been included. The 
above tunneling breakdown models, together with the 
compact models for avalanche breakdown presented 
previously[1] constitute a complete, compact representation 
of breakdown in ESD zener diodes. Their utility lies in the 
simulation of large systems of interconnected ESD 
structures, without detailed device analysis, permitting a 
�CAD-for-ESD� approach in commercial ESD design. 
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1 INTRODUCTION 

Zener diodes used as ESD protection structures may 
undergo breakdown due to the avalanche process or  
tunneling or a combination of both, depending on process 
parameters that set their nominal breakdown voltage. In the 
existing literature [4], analytical equations for direct as well 
as indirect tunneling are derived at 0oK. In this paper, 
compact temperature-dependent I-V models for direct as 
well as indirect tunneling are derived using piecewise linear 
approximations of the Fermi distribution functions. In the 
context of ESD zener breakdown, they complement the 
compact avalanche breakdown models developed 
previously [1]. The model for the indirect tunneling process 
has been validated using a 1N4728 3.3V Si zener diode. 
Self-heating has also been included by using a thermal 
equivalent circuit for the bulk of the diode.  The utility of 
the models in a �CAD-for-ESD� environment is 
demonstrated through Saber simulations of ESD events in 
example protection circuits.  

 

2 ELECTRICAL MODEL  

In this section, the temperature-dependent electrical 
models for direct as well as indirect bandgap tunneling 
processes are derived. The model for indirect tunneling is 
validated using a 3.3V Si zener diode (1N4728).  

2.1 Direct Tunneling 

Consider a planar PN junction under reverse bias. A 
sketch of its band diagram is shown in Fig. 1. 

 

 
Figure 1: Band diagram sketch of a PN junction. 

 
Existing treatments of direct tunneling [2,3,4] assume a 

parabolic variation of the (imaginary) kinetic energy of 
electrons tunneling through a barrier. The corresponding 
tunneling current density under reverse bias in an isotropic 
and planar PN junction is given by[2]:  
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where: 
        ⊥E is the smaller of E, El-E; 

E, Ecn and Evp are as shown in Fig. 1; 
F is the maximum electric field in the junction; 
fp(E) and fn(E) are the Fermi distribution functions 
for electrons in the P and N regions respectively; 
meff is the electron effective mass; 

      E  is given by: 
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q is the electronic charge; and 
h  is the reduced Planck�s constant. 

 

 



In [4], Eq. (1) is analytically evaluated at T=0K (i.e. 
assuming �step profiles� for fp as well as fn). In this paper, 
temperature dependence is included in the analytical 
evaluation of Eq. (1) by using piecewise linear 
approximations for fp(E) and fn(E), as shown in Fig. 2.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2: Piecewise linear approximations for the Fermi 

distribution functions, fp(E) and fn(E). A parameter m is 
used to vary the slope of the two PWL functions. 

 
 
Depending on the applied bias voltage, the term fp(E)-

fn(E) in Eq. (1) can have either a trapezoidal or triangular 
shape, as shown in Fig. 3.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3: Two possible shapes for the difference 

function fp(E)-fn(E). The functions g1(E), g2(E) and g3(E) 
correspond to the analytical representations of each 
individual PWL segment (or point). L1, L2, L3 and L4 denote 
the x-coordinates of transition points between segments. 

 
 
Using the above PWL form for fp(E) - fn(E), Eq. (1) can 

be rewritten as: 
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where: 
i = 1 if L1 ≤ E ≤L2;  
i = 2 if L2 ≤ E ≤L3;   and 
i = 3 if L3 ≤ E ≤L4 

 
Consider the integral in Eq. (2) written in the following 

form: 
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where Enf , qVa  and El are as defined in Fig. 1. 
 
The possible analytical forms for the integral in Eq. (3) 

are then given by: 
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For i=1 and i=3: 
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Eqs. (4)-(7) represent analytical expressions for all the 

possible components Fij that could contribute to the integral 
in Eq. (2). For a given PN-junction, the number of 
contributing components (as well as each component�s 
corresponding limits Ea and Eb) is dependent upon the 
location of the quasi-Fermi levels with respect to the band 
edges in the N and P regions (see Fig. 1). This is illustrated 
in Fig. 4 using two examples of junctions with differing Epf. 
A compact model for direct tunneling must therefore 
determine the contributing components Fij and their 
corresponding limits Ea and Eb based on band information 
derived from its process-related parameters. 
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Figure 4: Examples of PN-Junctions with differing 

contributing components Fij (encircled) to direct tunneling 
current due to differing Epf.  

2.2 Indirect Tunneling 

The basic equation for indirect tunneling has been 
considered in [2] using results by Keldysh [5] and Price [6]: 
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         (10) 
where, in addition to symbols common with the direct 

tunneling case (that have meanings indicated in Fig.1 or 
against Eq. (1)): 

 
mx1,mx2,my1,my2, mz1 and mz2 are the components of 
the effective mass tensor; 

 mrx is reduced effective mass, given by: 
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  M2V is a parameter for phonon scattering; 
 ω is the phonon frequency; 
 n is the phonon occupation factor, given by: 
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Using the PWL form in Fig. 3 for fp(E)-fn(E), the 
integral in Eq. (10) may be rewritten as: 
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As in the direct tunneling case, let 
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The possible analytical forms for the integral in Eq. (11) 

are: 
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If i=1 or i=3: 
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Similar to the direct tunneling case, the indirect 

tunneling current for a given bias voltage is evaluated using 
one or more of the components Fi in Eqs. (12) and (13) for 
the integral in Eq. (10). The compact model for indirect 
tunneling must determine the choice of the contributing 
components FI (as well as the limits Ea and Eb in each case) 
from process parameters in a manner similar to that shown 
in Fig. 4. 

 

2.3 Validation 

The direct as well as indirect models are implementable 
in the standard modeling languages for network simulators 
(e.g. Saber or VHDL-A). Both models have been 
implemented and tested in Saber. The validation of the 
indirect tunneling model using a 3.3V 1N4728 Si zener 
diode is shown in Figs. 5 and 6. Contact resistance was 
modeled with a 10-ohm series resistance. At a global level, 
the model compares well with 1N4728 data. 
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Figure 5: Indirect tunneling model performance (dotted 

curves) vs. 1N4728 data (solid curves).] 
 

 
Figure 6: Indirect tunneling model performance (dotted) 

vs. 1N4728 data (solid) on a semilog scale. 

2.4 System Simulation  

Fig. 7 shows an ESD-zener protected CMOS gate being 
subjected to a 6kV HBM ESD pulse. Fig. 7 shows Saber 
simulation (using the 1N4728 model) results showing the 
key output characteristics.  

 

 
Figure 7: Schematic of dual-diode ESD protection 

circuit for CMOS gates being subjected to a 6kV HBM 
ESD pulse. 

 
Self-heating, though included in the model (as in [1]) 

has a negligible effect on the performance of the protection 
diodes in the circuit of Fig. 7 (due to the low temperature 
coefficient and high lead thermal mass). 

 

 
Figure 8: Saber simulation of the circuit in Fig. 7. The 

diode D2 breaks down upon application of the pulse, 
protecting the CMOS gate input. Self-heating effects were 
negligible. 

 

3 CONCLUSIONS 

Compact, physically based electrothermal models for 
direct as well as indirect bandgap tunneling processes have 
been developed and implemented in a network simulator 
(Saber). The model for indirect tunneling has been 
validated using a 1N4728 3.3V Si zener diode. The models 
are intended for use in system-level simulations involving 
large networks of interconnected ESD structures (e.g. in a 
�CAD-for-ESD� environment). An example simulation of 
the 1N4728 model in a dual diode ESD protection circuit 
for a CMOS gate input is used to demonstrate their utility. 
The compact tunneling models developed in this paper, 
coupled with the avalanche breakdown models developed 
previously [1] constitute a complete, compact 
representation of breakdown in ESD zener diodes. 
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