ABSTRACT

A simulation model for static analysis of a doubly supported capacitive MEMS RF switch has been constructed using electrical equivalencies. Energy-conserving large-displacement macro models for beam deflection, gap capacitance, electrostatic force, and mechanical contact are utilized. A one-dimensional finite-difference approach is utilized. The model is capable of reproducing the large-displacement beam deflection profile. The static model is verified by comparing APLAC® simulation results with measured CV characteristics. The results show that the model correctly reproduces the CV characteristics, including the performance at contact.

Keywords: MEMS, RF, Capacitive switch, Tunable capacitor, Equivalent circuit

1 INTRODUCTION

Micromechanical RF switches have challenged the traditional ways of controlling signals or power in a circuit. The switches are usually realized using a pin-diode or a FET. Capacitive switches have some advantages compared to semiconductor-based switches. The lack of semiconductor p-n and metal-semiconductor junctions eliminates the contact and spreading resistances caused by ohmic contacts. Distortion and power levels are also better controlled since no nonlinearities caused by semiconductor junctions exist.

A capacitive micromechanical switch usually consists of two parallel plates. One plate is fixed and the other is suspended using mechanical springs in a way that a bias voltage can vary the gap between them. A simplified structure of a doubly supported capacitive switch is presented in Fig. 1. The switch operation is highly nonlinear and, typically for MEMS, energy is exchanged in several domains. The mechanical-domain beam deflection is produced with an electric-domain voltage. When the gap changes, a fluidic flow in the gas between the two surfaces occurs.

When designing a structure for a capacitive switch, the critical parameters are the on/off capacitance ratio, as well as the actuation voltage values that will change the switch state. The need for a simulation model that can reproduce these key issues is apparent. Some models have been presented for a doubly supported switch, e.g., in [1], [2].

2 CAPACITIVE SWITCH MODEL

When formulating a model for static features, the switch operation can be divided into three parts; beam deflection profile, capacitance and electrostatic force, and mechanical contact. Combining these parts forms the complete model.

\[
\frac{\partial^2}{\partial x^2} \left(\frac{E}{h_b} \frac{\partial^2 z}{\partial x^2} \right) + h_b w_b \frac{\partial}{\partial x} \left(S \frac{\partial z}{\partial x} \right) = q(x, z), \quad (1)
\]

where \(I_y \) is the second area momentum, \(q \) is the load density, \(z \) is the deflection and \(S \) is the stress in the beam. Beam width and height are denoted with \(w_b \) and \(h_b \), respectively. For narrow beams, Young’s modulus \(E \) can be used instead of the effective value \(\tilde{E} \), which in this case is specified to be the plate modulus \(\tilde{E} = E/(1 - \nu^2) \), where \(\nu \) is Poisson’s ratio. For a beam with a rectangular cross-section, the second area momentum is given by \(I_y = h_b^3 w_b / 12 \) [5]. If a uniform and homogenous structure and a uniform stress is assumed along the beam length, Eq. (1) reduces to
The stress can be divided into two parts, the static residual stress \(S_R \) which is caused when the membrane is processed, and the elongation stress which is caused by the beam deflection. The total stress is defined to be [5]

\[
S = S_R + \frac{\bar{E}}{2\mu_b} \sum_{n=0}^{N-1} W_n \frac{(z_{n+1} - z_n - 1)^2}{4\Delta x},
\]

where \(W_n \) is a weighting coefficient for extended trapezoidal rule numerical integration.

2.1 Electrical equivalent circuit

The equivalent circuit for beam deflection is constructed using fundamental circuit blocks [1] for force and displacement. The spring force for each discrete section is generated with a current source (VCCS) connected between two velocity nodes. The source is controlled with 5 displacements; \(z_{n-2}, z_{n-1}, z_n, z_{n+1}, \) and \(z_{n+2} \) as well as the elongation voltage \(u_E \). This implements the spatial derivative terms from Eq. (2). The displacement voltage \(z_n \) \((v_n = \partial z_n / \partial t) \) is generated using a current source in parallel with a capacitor. Each section generates an elongation current source between ground and elongation node \(n \) to implement Eq. (5). A 1 Ω resistor is used to generate the elongation voltage \(u_E \) which represents the total elongation.

2.2 Capacitance Model

An electromechanical transducer is used to generate the electrostatic force according to the voltage across the upper and lower membrane, i.e., the actuation voltage \(U \) and beam displacement [1]. The electrostatic force acting on the capacitor surfaces is

\[
F_{el} = \frac{U^2}{2} \frac{\partial C}{\partial h},
\]

where \(h = d + z \) is the dynamic gap height. The transducer also includes the corresponding capacitance. Since the beam deflection is known at \(N \) discrete points, the gap between the plates is also known at discrete points. At each discrete point, a parallel-plate capacitor with an isolating layer having permittivity \(\varepsilon_r \) and thickness \(d_i \), the capacitance is given by

\[
C = \frac{\varepsilon_r \varepsilon_0 A}{\varepsilon_r \mu h + d_i},
\]

where \(A = \Delta x w_b \) is the plate area and \(\varepsilon_r \) is the gas permittivity.

The surface roughness of the isolating layer is taken into account by assuming a linear behaviour for the surface, which means that the rough surface blisters are assumed to be triangles above a smooth surface. This is similar to having a smooth surface slanted from \(-\frac{B}{2} \) to \(\frac{B}{2} \) as shown in Fig. 3, where \(B \) is the surface height distribution. For a small change in the \(x \)-direction, the differential capacitance can now be written

\[
\Delta C = \frac{\varepsilon_r \varepsilon_0 A \Delta x}{\varepsilon_r (h - \Delta h) + d_i + \Delta h}, \quad h > \frac{B}{2},
\]
displacement voltage. The capacitive switch model is shown in Fig. 4. Each section includes three APLAC [7] micromechanical library components. A model for beam deflection (BE) is controlled by the displacements of two preceding and two following sections, see Eqs. (3) and (4). A transducer (NTR) and mechanical contact (NC) complete the model for Nth part of the switch structure. Each section has three nodes, velocity node nv[i], displacement node nz[i], and the elongation node nE.

A model for symmetrical switch structure has also been implemented making it possible to model only one half of the beam. The other end’s boundary conditions must be changed (\(z'(l_b/2) = z''(l_b/2) = 0 \)) and boundary effects must be included also in the second-order term. Also the transducer capacitor values and elongation resistor value must be multiplied by two.

Figure 4: Internal structure of capacitive switch model. BeamElements (BE) are mutually connected with four adjacent elements. NormalContacts (NC) and NormalTransducers (NTR) are not directly controlled by adjacent sections. Transducer capacitors are connected in parallel.

3 MODEL VERIFICATION

Several MEMS switchable capacitors have been designed and fabricated. The structural material was chosen to be gold due to its high conductivity and due to fabrication issues. Since no suitable MEMS process was available, a new process was developed at Tronic’s Microsystems, France. The process uses gold to form both a bottom electrode (metal 1) as well as the suspended electrode (metal 2). A silicon nitride dielectric layer isolates the suspended electrode from the bottom electrode in case of a pull-in. Polymer is used as a sacrificial material and it is planarized before the deposition of the metal 2. In addition, the process contains a third metal layer which is used as structural material in anchoring and to form coils.

Measured CV characteristics of the switch shown in Fig. 5 are compared to the simulation results in Fig. 6.
The dimensions of the measured switch are shown in Table 2. In simulations, the switch structure was divided into 100 sections as presented earlier. Transient analysis with a very low frequency ramped pulse was utilized to avoid multiple DC solution caused by the component’s hysteretic behaviour. A constant capacitance of 600 fF was added to model the stray capacitance, and the surface roughness in the isolating layer was modified. Static residual stress was set to 20MPa.

Table 2: Dimensions (see Fig. 1) in μm for the switch used in verifying the simulation results.

<table>
<thead>
<tr>
<th>Dimension</th>
<th>Value (μm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beam length (l_b)</td>
<td>332</td>
</tr>
<tr>
<td>Beam width (w_b)</td>
<td>236</td>
</tr>
<tr>
<td>Beam height (h_b)</td>
<td>0.5</td>
</tr>
<tr>
<td>Lower electrode length</td>
<td>240</td>
</tr>
<tr>
<td>Static gap height (d)</td>
<td>0.5</td>
</tr>
<tr>
<td>Isolating layer height (d_i)</td>
<td>0.1</td>
</tr>
<tr>
<td>Surface roughness (B)</td>
<td>0.03</td>
</tr>
</tbody>
</table>

4 CONCLUSIONS

A static simulation model for a doubly supported capacitive MEMS RF switch was presented. The model is based on electrical-equivalent macro models for beam deflection, electromechanical transducer, and mechanical contact. The fourth-order differential equation for beam deflection is solved using finite differences. The gap capacitance is modelled using a parallel-plate approximation taking into account the permittivity of the isolating layer and the surface roughness. Comparison with measurement results show that the model correctly reproduces the CV characteristics, including the performance at contact. That is due to the increased area in contact when voltage is increased and also to the plate being able to press the isolating layer.

ACKNOWLEDGEMENT

The tunable RF capacitors were fabricated by Christian Pisella, Stéphane Renard, and Marjorie Trzmiel of Tronic’s Microsystems, Grenoble, France.

REFERENCES