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ABSTRACT

Electroosmotic 
ow is often the method of choice for
generating 
uid 
ows in micro
uidic devices. The re-
sulting 
ow has a characteristic 
at pro�le which has
the advantage of very low axial dispersion. This is only
the case, however, if the wall zeta potential is constant.
In many applications, the wall zeta potential is vari-
able, either through accident (wall adsorption of ana-
lytes) or design (patterned charges). An analytical solu-
tion is developed for electroosmotic and pressure driven

ows in straight micro
uidic channels of arbitrary cross-
sectional shape and distribution of zeta-potential, in the
asymptotic limit where variations in the axial direction
take place on long length scales compared to a character-
istic diameter. A method is provided for computing \ef-
fective 
uidic impedances" for such inhomogeneous mi-
cro
uidic channels. The theoretical results are used to
explain certain experimental data on CZE in a straight
microcapillary.
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1 Introduction

Electroosmotic 
ow (EOF) is a convenient mecha-
nism for transporting 
uid in micro
uidic devices. One
advantage of such 
ows over classical pressure driven

ows is that, the 
ow pro�le is uniform over the cross-
section of the channel, except for the very thin Debye
layer at the walls within which the 
ow velocity de-
creases to zero in order to satisfy the `no slip' boundary
conditions. However, the uniformity of the 
ow pro�le
and the resulting low Taylor dispersion are characteris-
tic of micro
uidic channels with a uniform wall charge.
In the presence of inhomogeneities in the wall charge,
induced pressure gradients are created that distort the
uniformity of the 
ow pro�le [1]. Such nonuniformities
could arise from various sources. A common cause of
nonuniformity of the wall charge is the adsorption of
analytes that alter the wall �-potential [2]. Nonunifor-
mities could also arise from imperfections in the fabrica-
tion process. A patterned charge on the wall may also be
deliberately engineered to built novel 
uidic properties
(such as chaotic mixing) into the micro
uidic channel.

The problem of EOF in the presence of variable �-
potential have been studied by Anderson & Idol [3], Herr
et al. [1], Ajdari [4], [5], and Stroock et al. [6]. The anal-
ysis presented here di�ers from the earlier ones in that
straight channels of arbitrary cross-sectional geometry
and wall charge are considered, subject only to the re-
striction that such properties be \slowly varying" in the
axial direction.

2 Lubrication Theory

On account of the narrowness of micro
uidic chan-
nels, axial nonuniformities in wall charge could typically
be expected to occur over a characteristic length that is
very much larger than a characteristic channel width.
This is true, for example, in situations where the vari-
ation of wall charge is due to the adsorption of ana-
lytes from the 
ow stream. Under such conditions an
asymptotic solution in the small parameter � (the ra-
tio of characteristic channel diameter to length scale for
axial inhomogeneities) to the full electrohydrodynamic
problem is possible. The solution allows a reduced de-
scription of the 
uid 
ow problem in all situations where
this so called \lubrication approximation" can be justi-
�ed.

The complete mathematical description in the limit
of thin Debye layers is provided by the following equa-
tions:

�0(@tu+ u � ru) = �rp+ �r2
u; (1)

r � u = 0 (2)

r2� = 0 (3)

where the 
uid velocity u, and pressure p, are de�ned in
the region 
 representing the interior of the channel, and
� is the electric potential. �0 and � are the 
uid density
and viscosity. In the limit of thin Debye layers, the elec-
trical and hydrodynamic problems are coupled through
the Helmholtz-Smoluchowski slip boundary conditions
[7]
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on the solid-
uid interface @
, where � is the dielec-
tric constant, � = �(x; y; z) is the wall �-potential and



E = �r� is the electric �eld. Neglecting the electrical
conductivity of the substrate we also have

[n̂ � r�]@
 = 0; (5)

where n̂ is the outward directed unit normal on @
.
At lowest order in the small parameter �, the solution

to the problem formulated above may be summarized as
follows [8]. The velocity is in the axial (x) direction at

leading order, u � îu(x; y; z)+O(�), and so is the applied

electric �eld, E = �r� � îE(x) + O(�). Pressure gra-
dients in the cross-channel direction may be neglected,
p = p(x). The axial velocity is given by

u = �
up
�

dp

dx
+
� E(x)

4��
; (6)

The functions up and  are de�ned by

@up
@y2

+
@up
@z2

= �1; upj@D(x) = 0; (7)

and

@ 
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@z2
= 0;  j@D(x) = ��: (8)

Both of these functions up and  may be evaluated by
quadrature from a knowledge of the Green's function,
G, of the Laplace operator with zero boundary condi-
tion corresponding to the 2D domain D(x), that corre-
sponds to the channel cross-section at axial location x
with boundary @D(x);

up =
1

4�

Z
D(x)

G(x; y; z; y�; z�) dy� dz�; (9)

 =
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�(x; y�; z�)t̂ � r
�

?Gds� (10)

where t̂ = n̂ � (n̂ � î)̂i, and r�
?
denotes the two dimen-

sional gradient (@y� ; @z�).
The remaining unknown functions E(x) and p(x) are

determined using solvability conditions on the electrohy-
drodynamic problem at the next order in the expansion
in �. Physically, these conditions are nothing but the
requirements of the conservation of volume 
ux of 
uid
and electric 
ux:

Q = �
�up
�
A(x)

dp

dx
+
�F � 

4��
; (11)

E(x)A(x) = F: (12)

Here F is a constant representing the electric 
ux through
any cross-section, A(x) is the cross-sectional area and
the overbar indicates average over the cross-section, �f =
A�1

R
f dydz.

One consequence of equations (11) and (12) may be
easily seen by solving (11) for dp=dx, and, integrating

both sides over the entire length of the channel. This
gives the result that the volume 
ux Q through such
an inhomogeneous channel is exactly equal to the 
ux
through an \equivalent" uniform cylindrical capillary of
radius a� and �-potential ��:

Q =
pa � pb
8�L

�a4� �
���
4��

�a2�
Va � Vb
L

: (13)

where

a� =

�
8

�h�u�1p A�1i

�1=4
; �� = �

h � �u�1p A�1i

8�hA�1ih�u�1p A�1i1=2
;

(14)

and h i denotes axial average over the length of the
channel. The concept of the e�ective radius and ef-
fective �-potential could be quite useful in the analy-
sis of micro
uidic circuit components, the coeÆcients of
pa � pb and Va � Vb in (13) may be thought of as \
u-
idic impedances" in analogy with electric circuit theory.
In problems of electroosmotic 
ow through porous me-
dia (such as the electrokinetic pump) a useful model
consists of approximating the porous media as a series
of parallel channels with undulating walls and possibly
variable �-potential. Equation (14) could then be use-
ful for calculating the e�ective resistance to 
uid 
ow
through such a media. Since the lubrication solution re-
quires only the evaluation of an integral once the Green's
function is known, it could be used as an eÆcient algo-
rithm for numerical solution of 
ow problems through
slowly varying channels. This is specially true in cases
where the Green's function, or equivalently, up and  
are known analytically. The linear problems (7) and (8)
represent respectively the deformation �eld in a curvi-
linear cylinder subjected to a small twist [9], and, the
distribution of electric potential in a closed 2D domain
when the potential distribution on the wall is known.
These are well studied problems in applied mathemat-
ics, and, analytical solutions are available for a variety
of cross-sectional geometries.

The lubrication approximation is independent of the
thin Debye layer approximation, and, the development
outlined above may also be carried out in the presence
of �nite Debye layers [10].

3 Experiments

As an example of the usefulness of the results pre-
sented above, we will now apply them to certain exper-
iments on the e�ects of protein adsorption on capillary
walls reported by Towns & Regnier (henceforth TR) [2]
in the context of CZE.

The �rst experiment (TR) consisted of applying a
known voltage drop to a cylindrical capillary of �xed
length containing a bu�er of known pH. A small amount
of protein mixed with a neutral marker (Mesityl Oxide)
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Lysozyme pI 11.0
Cytochrome C pI 10.2
Chymotrysinogen pI 9.2
Ribonuclease A pI 9.3
Myoglobin pI 7.3
Conalbumin pI 6.3
Carbonic Anhydrase pI 6.2

Figure 1: Comparison of experiment (symbols, from
Figure 4 of TR) with (17) (lines) for elution times in
an adsorbing capillary

was introduced as a plug at one end of the capillary.
The time of passage of the marker past certain �xed de-
tectors along the capillary was noted as the plug was
advected along the capillary by the EOF. The experi-
ment was repeated with several proteins ranging in pI
from 3.2 to 11.1. A simple model may be constructed if
we ignore here the details of the complex physical inter-
action between the wall and the analyte. Instead, let us
summarize this information by simply postulating that
as the plug moves along the capillary, it leaves behind
a zone of altered �-potential whose axial variation is
known. Thus, if `x' denotes distance from the injection
end of the capillary and if x = X(t) be the position of
the plug at time `t', we could represent the � - potential
at any time as

�(x; t) =

�
Z(x) if x < X(t)
�0 if x > X(t)

(15)

where an appropriate model must be chosen for Z(x).
Since the plug is advected by the bulk 
ow, we may
write

dX

dt
= �u = �

�h�iE

4��
; (16)

since for a cylindrical capillary, �� = h�i [8], a result
also established by Anderson & Idol from their exact
solution for cylindrical capillaries [3]. The right hand
side would in general be a function of X . In order
to explicitly evaluate it, we need to know the distri-
bution Z(x). This distribution however is determined
by the complex nonlinear physics of the interaction of
the analyte with the wall, and, a full analytical solution

of this coupled problem is diÆcult. A useful simpli�-
cation is to use an ad hoc form for the function Z(x)
Z(x) = �0+(�1��0) exp(��x) where � is a positive pa-
rameter of dimension inverse length that determines the
strength of the adsorption. Let the altered �-potential
at the capillary entrance, which is di�erent from the
unaltered �-potential, �0, be denoted by �1. The expo-
nential model is not entirely unreasonable as it may be
shown very easily that a simple linear model for protein
adsorption, _c = ��c where c is the amount of protein in
the plug and � is a constant, would, for example lead to
such an exponential distribution if the alteration of the
electroosmotic 
ow is neglected. On using this assumed
form of Z(x) in (15) we get a di�erential equation for de-
termining X which may be readily solved in closed form
giving the following expression for the elution time te
for a station located at a distance Xe from the injection
end:

te =
L

ue

1

p� f
ln

�
f

p
+

�
1�

f

p

�
exp

�
pXe

L

��
(17)

where L is the total length of the capillary, ue is the
electroosmotic 
ow speed in the absence of protein ad-
sorption, p = �L and f = 1 � �1=�0 are dimensionless
parameters. Equation (17) is �tted to the experimen-
tal data of TR in �gure 1 using f and p as adjustable
parameters in the case of each protein.

In the second experiment (TR) the �-potential dis-
tribution was �xed (did not evolve with the 
ow). A
plug containing only a neutral (nonadsorbing) marker,
Mesityl Oxide was used in a capillary, a section of which
was coated with 20-kDa poly(ethylenimine) or PEI 200,
a polymer that masks the silanol groups on the surface of
the fused silica capillary giving it a net positive charge.
The ratio of coated to uncoated section was altered by
succesively cutting o� and removing 3 cm sections of the
capillary from the inlet end, and simultaneously adjust-
ing the applied voltage to keep the electric �eld strength
constant. The �-potential is then a step function, and
�u may be easily calculated from (16), which allows the
calculation of the elution time. In �gure 2, this theo-
retical calculation of the elution time is compared with
the experimental measurement choosing the unknown
parameter f to get the best �t (f = 1:326).

In the case of cylindrical geometry, up and  are
known, so that the velocity pro�le in the case of a par-
tially coated capillary may be explicitly calculated. This
allows us to determine the e�ective axial di�usion co-
eÆcient given by the sum of the molecular di�usion,
D, and the Taylor-Aris dispersion[12], [13] D� = D +
(r20u

2
m)=(192D) where um is the maximum magnitude

of the parabolic part of the velocity pro�le. Since the
bulk velocity is known, the travel times through each
section, t may be calculated and hence the variance
acquired by the plug in traveling through this section,
2D�t is determined. The total variance �2 is then the
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Figure 2: Elution time as a function of capillary length
in TR's experiment (circles) with partially coated capil-
lary together with control experiment (squares) without
PEI 200 coating, from TR Figure 5. Lines indicate the-
ory.

sum of the initial variance �20 and the contributions
to the variance from each of the two capillary sections
(of total length `X '). The number of theoretical plates

N = X2

�2 may then be calculated [14], and this is com-
pared in Figure 3 with the experimental data. The ini-
tial variance (�20 = 0:0252 cm2) and di�usion coeÆcient
(D = 6:991�10�6 cm2/s) are chosen in order to provide
the best �t.
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