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ABSTRACT

This paper presents a detailed calculation of the
electronic structure of quantum dots with various
geometries. In particular, non-circular quantum dots are
examined and their characteristic properties analysed. In
addition, the importance of electron-electron spin exchange
and correlation is addressed.
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1 INTRODUCTION

Quantum dots, also known as artificial atoms, are so
termed because like real atoms they confine the motion of
an electron in space resulting in a discrete energy spectrum.
However unlike their naturally occurring brethren, artificial
atoms can be manufactured in such a way to exhibit a
precise control over this confinement, which has opened up
a wide range of possibilities and areas for examination
(Kouwenhoven et al 2001). For example, they are not
limited to being spherically or circularly symmetric — we
can have elliptic dots, rectangular dots, triangular dots, and
even dots without any symmetry. Transitions never
observed in the spectra of natural atoms can be obtained
from the artificial ones. In the future, quantum dots may be
used to build more efficient and precisely controlled lasers
with otherwise inaccessible wavelengths, and also as vital
components of nanoelectronic devices (Reed 1993,
Gammon 2000). It is also hoped that quantum dots may one
day be able to help realise the dream of quantum computing
(DiVincenzo et al. 2000).

This field of study has emerged from recent advances of
nano fabrication technology, and thus only very limited
theoretical work has been done. Pfannkuche et al. (1993)
performed Hartree-Fock self-consistent calculations for a
two-electron quantum dot and compared with results
obtained from direct numerical diagonalisation of the two-
particle Hamiltonian. They obtained good agreement
between these two calculations for the triplet state, but
markedly different results for the singlet state. This
indicates that spin correlation was not properly built in their
Hartree-Fock model. Ezaki et al. (1998) applies a brute
force approach by numerically diagonalising the N-electron
Hamiltonian, using Slater determinants composed of 26
single-electron eigenstates. However, such an approach

involves the calculation of a very large number of integrals
and the inversion of large matrixes, and thus requires
considerable numerical resources. Macucci et al. (1997)
studied quantum dots with up to 24 electrons using a mean-
field local-density-functional approach, in which the
exchange and correlation potential was approximated by an
empirical polynomial expression. Lee et al. (1998) also
studied an N-electron quantum dot using the density
functional theory, where the generalized gradient
approximation was used for exchange correlation
potentials. Exchange interaction comes directly from the
anti-symmetrisation of wavefunctions as required by the
Pauli exclusion principle. In the density functional theory,
this is a major problem since the mathematical object is
electron density rather than electron wavefunction, while
the exchange interactions can be readily built in the
Hartree-Fock method that deals with wavefunctions
directly.

In the following sections, we will first look at a single
electron in quantum dots of various geometries. The
electronic structure of multi electrons will then be
examined through the Hartree-Fock formalism.

2 SINGLE ELECTRON SYSTEMS

In our model of quantum dot systems, we assume that
the confining potential can be separated into a vertical (z)
component and a lateral F=(x,y) component. The
confining potential in the vertical direction can be thought
of as effectively being a very narrow triangular well,
whereas the lateral confining potential V() can be made
arbitrarily complex. The energy level of the first excited
state in the z direction is generally hundreds of times
greater than many of the low energy states in the x-y plane.
This property allows us to model electron motion in a
quantum dot as two-dimensional. The corresponding
Schrodinger equation reads

O n O
gﬁﬂ+ V(X,V)H#(X7y)=Ew(X,y), (M

where m* is the effective mass and 002 is the two-
dimentional Laplacian.

If we map the wavefunction (X,y) as well as the

kinetic and potential energy operator onto a numerical grid,
Eq. (1) becomes a matrix equation, which can be solved by



several well-established methods (see, for example, Saad,
1992). In this work, we used the ARPACK library
(http://www.caam.rice.edu/software/ARPACK), which was
designed to solve large scale eigenvalue problems.

The ARPACK library is so named because of its use of
an Implicitly Restarted Arnoldi method. Using this
technique, a set of Schur vectors are calculated which give
rise to approximate eigenvalues and eigenvectors of the
original matrix. The library is written in such a way that
when the main routine is called, it returns the user with a
vector. The user is requested to multiply the vector by the
matrix for which the eigenvalues are required and then re-
call the same routine. This process continues until
convergence is achieved. When the library determines that
a reasonable set of Schur vectors have been calculated, a
separate routine is used to calculate the eigenvalues and
eigenvectors from the previous iterative refinement.

The ARPACK library is most suitable for use on
"sparse" matrices, where the definition of "sparse" is such
that the multiplication of a vector by the matrix is an order
O(n) operation. That is, if the vector has » elements, and the
matrix has n° elements, most of the elements of the matrix
are zero so that the number of multiplications and additions
required to multiply the vector by the matrix is only
proportional to n (multiplying a dense matrix with n” non-
zero elements is an order O(n’) process). Thus the time
required to complete the calculation is proportional to the
length of the eigenvectors and the number of eigenvectors
required. Therefore, the ARPACK library is most
advantageous when only the first few eigenvectors are
required, as is the case, for example, when computing the
first few eigenfunctions of a Hamiltonian.

We studied four different quantum dot systems (elliptic,
triangle, square and annular ring). Their energy levels are
listed in Table 1. The first panel of Figures (1-4) shows the
confinement potential of the dot, and the other panels
illustrate the wavefunctions of the first five eigen-states of
the system.

Table 1: Energy levels (a.u.)

Elliptic Triangle Square Ring
1 1.1 0.99 0.99 1.00
2 2.1 1.96 1.97 1.12
3 2.3 1.96 1.97 1.12
4 3.1 2.88 2.76 1.45
5 33 2.97 2.93 1.47
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Figure 2. A triangular QD
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Figure 3. A square QD

Figure 4. An annular ring QD

3 N-ELECTRON SYSTEMS

We now turn to the problem of an N-electron quantum
dot system, for which the Schrédinger equation is

?Hz O V(r)H 2 s.z S/J(Ch (G- Gu) = E(0n,0r,-0)

>j=1 T
)
where @ represents collectively both the spatial and the
spin coordinate of the it clectron.

To solve the above equation we employ the Hartree-
Fock method. The Hartree-Fock approach is a particular
case of the variational method, in which the trial
wavefunction is assumed to be a Slater determinant,

Yahiil ypHiL [ ynkial

Lo EY okl L nHiL
Yii, Gp, -..OnL= AN 2\% beZ I|-| y |:12 o)
alNL YpHNL [ ynldnLp

where Y| HjjL are the individual electron spin-orbitals.

The basic assumption in the Hartree-Fock approach is
that each electron moves in the time-averaged charge
distribution due to all the other electrons. From Egs. (2) and
(3), the Hartree-Fock equation describing such an electron
can be readily derived as

J é&m@é +VH L+ VIHL VPN L= By L (4)

with
-
ViWL=, VIHL=, ¢ XA”A
nml Fij ’
VPHLy L=,

nmtl

where X12m¢ is the spin part of the wavefunction, the
direct potential V& HL represents the average Coulomb
interaction due to the N -1 electrons, and the exchange
potential V fHL represents an exchange term due to Pauli’s
exclusion principle. A self-consistent procedure is applied,
in which an initial guess is made for the wavefunctions of
the N -1 electrons and Eq. (4) is solved for the Nt
electron. This wavefunction is then used as an improved
guess for that electron in the calculation of the
wavefunction of another electron. Self-consistency is
obtained by repeating this process iteratively until no
further change of the wavefunctions.

We have carried out such a calculation for a circularly
symmetric quantum dot with up to n=1[8 electrons.
Calculations for other geometries are underway and will be
reported at the conference. Our results for the circularly
symmetric quantum dot are presented in Figures (5-7). The
addition energy is defined as



Ap(N) = E(N +1) - 2E(N) +E(N -1), (5)
where E(N) is the ground state energy for a N-electron

system.
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Figure 5. Addition energies for a circularly symmetric QD
with confinement potential V(x,y) = k?(x? +y?)/2.
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Figure 6. Addition energies for different k values.
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Figure 7. Comparison of a Hartree (without exchange) and
a Hartree-Fock (with exchange) calculation for k =10,

Tarucha et al (1996) were able to experimentally
measure the addition energy of a quantum dot structure. As
a negative voltage is applied to the side gate, the diameter
of the dot becomes smaller and excess electrons are forced
out one at a time until there are none left in the conduction
band. A current will flow only if the number of electrons in
the dot changes. This will only happen when certain

current peaks is a measure of the addition energy, which is
shown in Figure 8. Note that the experimental peaks tend to
fall off more rapidly than the theoretical results probably
due to the fact that the calculations are performed for fixed
k, whereas the experimental technique of slowly altering the
voltage to remove the electrons would scan through a range
of k values.
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Figure 8. Addition energies measured by Tarucha et a/
(1996) and calculated by Ezaki et al (1998).

4 CONCLUSION

In this work we have examined the electronic structure
of quantum dots with various geometries. As a first step, we
investigated the single electron solutions to the Schrodinger
equation. A general method was developed which allows us
to treat a wide range of different confining potentials. We
also studied a circularly symmetric dot with up to 18
electrons. Our results are in good agreement with the
theoretical work by Lee ef al (1998) and also compares well
with the experimental results of Tarucha et al (1996). The
spin exchange interaction is found to be responsible for the
secondary peaks in the addition energy spectrum.
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