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ABSTRACT

We present a method for the calculation of the
coefficients of cubic stiffening for tether-suspended
micromachined systems. The analysis is based on a
nonlinear rod theory, and enables the prediction of the
maximum achievable motion amplitude prior to the onset of
nonlinear behavior. The analysis is applied in detail to a
microgyroscope. Comparisons with a finite element model
and experimental data are used to validate the analysis, and
issues pertaining to the optimal design of the gyroscope’s
suspension are investigated.
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1 INTRODUCTION

MEMS suspension beams are usually treated as lumped-
parameter linear springs. Formulas for the spring constants
using Bernoulli-Euler beam theory are well-known and can
be found in [1-3]. In general, however, the spring force is
nonlinearly dependent on the displacement. For example,
experimental data showing spring-hardening or spring-
softening in the frequency responses of MEMS have been
reported in [4-7]. However, analytical results for MEMS
have been reported only for a few special cases.
Micromachined vibrating clamped-clamped beams are
modeled in [8]. For the case of suspended masses, an
analysis based on nonlinear Bernoulli-Euler beam theory is
reported in [9], but this approach accounts only for the
effects of nonlinear bending; the effects of axial
deformations are not modeled.

In this paper, a method for computing the constants of
the nonlinear components of the restoring force (or torque)
is presented, and the formulas are specified for the cubic
term. The analysis is based on a nonlinear rod theory,
described in [9-11], which accounts for axial deformations
as well as nonlinear flexure with shear deformations. The
theoretical results are compared with finite element
simulations and measured data for the micromachined
gyroscope shown in Fig. 1. The authors have previously
used a linearized version of the rod theory to construct a
continuum model of the suspension of a similar
micromachined gyroscope [12].

Figure 1: A micromachined gyroscope.

2 ANALYSIS

2.1 Nonlinear Mechanics

We assume that the rotor of the gyroscope is a rigid
body, that the four beams are identical with length L, and
that the distance from the rotor’s centroid to each beam’s
point of attachment is R. The geometrical parameters and
the material properties for polysilicon are listed in Table 1.
All displacements are assumed to be in the plane of the
device. Let n;(x) and n3(x) be the lateral and axial contact
force components, respectively, let M,(x) be the moment,
let u;(x) and u3(x) be the lateral and axial components of the
deflection of the beam axis, respectively, and let 8(x) be the
angle between the cross-section and the undeformed axis.
The convected coordinate x locates material points along
the beams’ axes. We take the following constitutive
equations for n;(x), n3(x), and M,(x) [11]:

n =EAu [u{z +(1+u§2 )—1]
+G Ak cos (8)u] cos (8)—(1+u3)sin (6))]
+E1, 0% sin (0)[u] sin (6)—(1+u5)cos (8)],
ns =EA(1+u;2)[u;2+(1+u;2 -1]
~G Aksin (8)[u] cos (0)— (1+u3 )sin (6)]
+E1, 6 cos(6)u] sin (8)—(1+u3)cos )],
M, =E L{[u] 'sin (8)— (1+u3 )8’ cos (6)]

[(1+ 45 ) cos (8)+u; sin (O)]}. 1)
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For a rotation of the rotor ¢ about its central axis, the
restoring torque supplied by the four suspension beams is

T, =4[Rns (L)sin(0)- Ry (L)cos(9)-M,(L)] .

Computing the restoring torque requires a solution of the
balance laws subject to the appropriate boundary
conditions. We assume that the anchors approximate a
clamped boundary condition. In summary, the governing
equations and boundary conditions for the suspension
beams are

n =0, ny=0, M5+ (1+uz)n —uin; =0,

( )=0, u3(0)=0, 8(0)=0,

uy (L )=Rsm( ), us(L)=R[1-cos(0)], 6(L)=06. (3
Because the differential equations are nonlinear, they

require a numerical solution. To proceed further
analytically, approximations must be employed.

Parameter Notation Value
Rotor Inner Radius R 250 um
Suspension Beam Length L 105 um
Suspension Beam Width w 1.5 um
Structural Layer Thickness h 2.25 um
Cross-Sectional Area A h*w
Moment of Area b 1/12% h*w’
Elastic Modulus E 160 Gpa
Poisson’s Ratio v 0.3
Shear Modulus G 62 Gpa
Shear Coefficient' k 1

Table 1: Properties of the microgyroscope.

2.2  Approximate Theory

We assume series expansions for the fields:

ny (x)=n“(x)¢+n12(x)¢2 +n13(x)¢3 +...,

B(x)= N3 (x)¢+ N3 (x)¢2 + 733 (X)¢3 +...,

S (%)= My (x)0+ M (x) 0% + M 5 (x)0° +...,

L) =g, (X))o 1y (x)0% +u5(x) 07+

3 (x) = 13 (x) 0 135 (1) 07 +us3 (x)0° +...,

6(x) =0, (x)9+0,(x)0* +0;(x)¢° +... . 4)

< g N

<

The third order approximation to the restoring torque is
T, =4 [‘ Rny, (L)‘le (L)]¢
+4[- Ry, (L)+ Ry (L)- M 5 (L)]0? ®)

+4[% Ry (L)=Rny(L)+Rnyy (L)-M o (L):| 0*.

! The shear coefficient, k =1, is due to Rubin [13].

To calculate the approximate torque in Eq.(5), one must
solve Eq.(3) at each order in ¢. The resulting expressions
are
T, =K, 0-K, 6" = K3 ¢°,

_16EL G Ak(2- 3LR+3R2)+3E12]
GAKL*+12EI, L

1=

K,=0, K;= B . 6)
2 3 3 2 4
1575EAL (GAKI? +12E1,)

The expression for B, as well as additional details regarding
the derivation of Egs.(6), can be found in [14].

2.3  Physics of Axial Deformations

A comparison of the approximate axial displacement
profile us(x), the exact axial displacement u3(x) calculated
by numerically solving Egs.(3), and the axial d1splacement
calculated with large-displacement FEA? is shown in Fig. 2.
The suspension beams undergo tensile deformations near
the anchors and compressive deformations near the rotor.
The theoretical results predict less axial deformation at the
rotor than does the FEA. The discrepancy may be due to
elastic compliance in the rotor, which is neglected in the
theoretical analysis.
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Figure 2: Axial deformation of a suspension beam for a
static rotation of the rotor of ¢ = 1°.

3 COMPARISON WITH EXPERIMENTS

The frequency response of the gyroscope was measured
electronically using an off-chip amplifier. The tests were
conducted at a pressure of 22 mTorr and with a DC bias
voltage of 5 V. For applied AC excitation voltages of 1 mV,
5mV, and 10 mV, the measured and theoretical amplitude
frequency response curves are shown in Fig. 3. The jump
frequencies are accurately predicted by the analysis.

2 The model was simulated with ANSYS 5.6 using the
analysis option NLGEOM.
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Figure 3: Measured (upper plot) and theoretical (lower plot)
frequency response curves showing spring-hardening.

4 OPTIMAL MECHANICAL DESIGN

When the dimensions of the cross-section are small
compared to R and L, i.e. {w,hj<<{R,L}, then shear is
negligible, and K; and Kj; reduce to the following simplified
expressions:

K =2EL (2 -3LR+3R2),
L
Ky =P A (12 —9LR+9R%) . )
2251

We now consider the radius R to be a fixed design
parameter and consider suspension designs which minimize
the nonlinear behavior. It should be noted that K; =0 for
R/L =(0.873,0.127). Physically, these optima arise from
the cancellation of spring-stiffening nonlinear flexure and
spring-softening effects such as that arising from the axial
compression of the beams at their points of attachment with
the rotor. A four-beam suspension design in a process with
a single structural layer is constrained by the inequality
R/L>1. To minimize K3, then, the anchors should be set
as near to the center of the rotor as possible.

Minimizing K3 without annihilating it, however, may
not minimize the overall nonlinearity, because designs that
reduce K; also tend to reduce K|, resulting in a larger
displacement amplitude for a given applied torque.

Therefore, a better strategy is to minimize the ratio of cubic
and linear contributions to the restoring torque, which we
define as an objective function, J:

_K3|¢|3 =£|¢|2 )

J= 8)
K o] K

The amplitude at resonance is
Topplicd

] o ] = applied_ 1 )

K,
where Tgpies is the amplitude of the periodic applied

torque, and Q is the quality factor. For a given applied
torque and quality factor, and assuming slender beams,

Lli_oR oY
57600E213J R L L

= . (10)
AR*T2 .0 O° 213
pplied
51-3&3[5]

The plot of the right-hand side of Eq.(10) as a function
of R/L, shown in Fig. 4, indicates that, for designs
constrained by the inequality R/L>1, designing the
suspension with shorter beams reduces the nonlinear effect.
The rate of nonlinearity reduction decreases for beams
shorter than L =1/2R . These further improvements result
from decreasing the amplitude of vibration, which in turn
tends to reduce the gyroscope’s sensitivity. We note that
this and other design considerations may outweigh an
optimization of the nonlinear stiffness. However, the above
analysis provides a means of evaluating the inherent trade-
offs.

These designs are not
4 realizable using
one structural layer.
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Figure 4: Non-dimensionalized ratio of the cubic and linear
contributions to the restoring torque.

5 CONCLUSIONS

We have derived formulas for the cubic stiffening
component of the restoring torque supplied by the
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suspension beams for a microgyroscope. The theory
correctly models the physics of the axial deformations, and
gives a good prediction of the frequency response
characteristics of the microgyroscope. Formulas are given
in the Appendix for two additional suspension designs
common in MEMS.
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APPENDIX
L L
. 4EL[GAK(2 -3LR+3R?)+3EL)] 4EL[G AK(2 +3LR+3R)+3E 1) 12GAKEI,
Ky =— 2| g =222 = 2OARED
Shear included | & GAKL+12EL, L ! GAKkP+12EL,L 'TGAKD +12EL L
K;
4EI 4EI (12 2 _12EDL
{w,n}<<{L,R} K1=_L3_2.(L2_3LR+3R2) K=t (% +3LR+3R?) K==y
B/4 o/4 n
i Ky = Ky = Ky= .
Shear included 1STSEAL (GAKL? +12E L) 1STSEAL (GAKIZ +12E 1) 1TSEAL(GAK2 +12E L)
K3
4EA (2 2 4EA [ 2 252E A
w,h<<iL,R K3 = L"-9LR+9R Kq= 12 +9LR+9R 5=
fwhp<<{L R} 225L3( f } 225L3( f 17513

Table 2: First and third stiffness coefficients for three suspensions commonly used in MEMS. Each coefficient is for one
suspension beam. The lengthy expressions for 3, 6, and 1 can be found in [14].
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