TCAD Modeling Using a Neural Network Based Approach

R. Matei, G. Dima and M.D. Profirescu

EDIL R&D Centre, University Politehnica of Bucharest
PO Box 74-121, 77400 Romania, devsim @edil.pub.ro

ABSTRACT

In this paper we present a neural network based
approach for TCAD empirical modeling. We develop a
neural interpolator with a multi-layered feed-forward
structure for building empirical models based on a set of
experimental/simulated data. We assess the neural
nterpolator performances on modeling the transport
parameters for bulk In,Ga; xAs.

Keywords: RSM, neural network, empirical modeling

1 INTRODUCTION

Simulation frameworks allow to conduct a planned
computer experiment and to build empirical models from
a set of experimental/simulated data collected
accordingly with a design of experiment (DOE) strategy.
The traditional surface modeling [1,2,3] may not be able
to fit well on some cases, hence the motivation for
searching alternative solutions, which may prove more
convenient for particular situations. Neural networks
could be such a candidate for the TCAD empirical
modeling purposes [4,5].

The present approach tried to combine the precision
of a Monte Carlo (MC) algorithm with the flexibility and
speed of a neural network structure. The challenge was
to find a way to decrease the computational overhead
associated with MC simulator while transferring it to the
neural network. Classically, the MC simulator compute
the values of various output parameters in each
simulation point without using the correlation between
previous and actual simulating point or in other words
without any interference. It would be better to use the
MC simulator only in certain points while letting the
neural network to learn the nature of the process from
them and build an empirical model.

2 MATHEMATICAL MODEL

The neural network is based on a multi-layered
perceptron feed-forward architecture trained based on a
back-propagation error algorithm. More concrete, we will
use an quasi-Newton training sequence optimized for
speed, known as Levenberg-Marquardt rule. Basically,
this method traces a minimum point on a quadratic cost
surface using a classical Newton method but

approximating the inverse of the hessian matrix instead of
effectively computing it. This leads to a low amount of
computing time while preserving precision. The learning
process in feed-forward architectures can be studied as an
approximation process of a generic function:

F:AcRY” -5 R" from a bounded region of a M
dimensional euclidean space to a N dimensional bounded
sub-region F(A) in the same euclidean space. This
approximation problem is often solved using supervised
learning algorithms and defining a training set: (x,d),
(x2,dz) ...(xp,dp) where d,=F(x,), with I<p<P. The
neural model is also known as “mapping network”. The
approximation theory has as studying object the
approximation of a continuous multivariable function F
by the approximation function F(w,x) with a given number
of w parameters. For a given function F this w set of
parameters must be calculated in order to best fit the F
function on a given train set. In our case, the w set
represents the weights of the connections between neural
cell units. The w set is computed by searching in the entire
weights space (this often leads to a NP problem with an
exponential solving time because of the high dimension of
this space). The solution, noted as w* (the optimal vector
of the network parameters which minimizes a cost
function) is not unique due to the possible weights and
hidden neural cells permutations therefore there are many
points of global minimum and even more of local
minimum. There are several precautions to be made in
order to prevent algorithm blocking in such points of local
minimum: weights symmetry breaking, structure
symmetry breaking, carefully choosing the initial
conditions [6]. If we identify w=[w,,uﬁ,...vg]r as the vector
of the neural network parameters then we can assume that
computing the minimum value of a cost function C(w)
(usually a L, class function) is a linear, discrete time
searching. This searching starts from w, following the d
direction (the negative gradient of C(w)) this gradient
being evaluated at every k step by a deterministic first
order gradient relation:

The w, parameter is defined as follows:

Wiey =W+ 2

518 Modeling and Simulation of Microsystems 2001, (www.cr.org), ISBN 0-9708275-0-4.

where 7 is learning rate at k step. Consecutively steps

following the negative gradient are orthogonal resulting in a
crisscrossed trajectory:

0=—a—C(wk +mdy)=d, 'VC(Wk+1) ©)
O

This method is a very fast and simple one but sensible
to local minimum problem. The second order deterministic
algorithms (as that used by us) involve the second grade
derivatives of the cost function C(w)

d, =-VCw,)+ Bdy, @
do = —VC(WO) (5)

where fB; is chosen in order to minimize previous gradient
direction variation. This way, the searching path defined by
d; must not alter the gradient component that followed the
previous trajectory dy.; Therefore, till the first derivative
depending on 1, the following relation must be true:

dy. - VCwy +1n,dy) =0 ©)

The cost function C(w) can be approximated with a
Taylor series around the w; point:

Cw)=Cwe)+(w-w, ¥ VClwy)+

.
+é(w-w,c)TV2C(w,ch-wk) @

We note J(w,) as the jacobian and H(wy) as the hessian
both evaluated in wj, point:

J(wk)=VC(wk)=§7C| ®8)

d%c
H(w,)=V*Clw,)= v ©9)

Differentiating (7) and using (8) and (9) results:

VCwy) =J(we)+ H(wy w-we)+... (10)
Using (3) and (10) results:
d, Hd, =0 (11)

Choosing f; from (4) can be done using various
methods (Fletcher-Reeves, Polak-Ribiere). The idea of
Newton method on which fundament of quasi-Newton

resides is that the minimum of the cost function C(w) which
represents the solution of the optimization problem is a
point where VC(w) =0 and this point can be computed
equalizing (10) with 0, in the same time ignoring the higher
order terms of the series. If the inverse of the hessian exists
then results the discrete time Newton relations:

w=w -H " (w, Jwy,) 12)
Wieps = Wi - H (W)JJ(w) (13)

These relations lead to a fast convergence algorithm
also with the advantage of avoiding local minimum
problem. Due to its disadvantages (hessian might be
singular and the method necessitates the computing of the
second order derivatives) we tried to approximate the
hessian inverse therefore using a quasi-Newton method

where H™! is the matrix which approximates the hessian

inverse A~! (k index marks discrete time step k). For .
results in:

Weer = Wi +Medy =wi —1H'VC(W,) 14)
with 7, chosen by minimizing

M = argrfr’lzile(wk —nkﬁ-IVC(Wk)) (15)

and inverse hessian approximation given by relation:
Hi =B+

. (16)
+'P(H ¥ s Wes =Wy, VC(Wg1)— VC(w,))

Function ¥ is not a simple one. Therefore can be
seen that no evaluation of the actual hessian inverse is
performed. This quasi-Newton method in searching path
regarding gradient descent rule is stable and the amount
of memory required is lower than that required by the
classical Newton, all of these while keeping a high
speed. An observation regarding the local minimum
should be made: this problem isn’t so relevant because
almost always the evaluation of C(w) is made with an
imposed error. When imposing the error we do not know
which is the relation between this error and the global
minimum error, which might exists or not in a given case
(the complexity of the error surface in a
multidimensional space does not allow assertion like
“there is a global minimum” or “there is only a global
minimum” to be considered reasonable). Therefore, for a
given problem the global minimum is the imposed error
and often it is not interesting if somewhere on the error
surface exists another point where the error is much
smaller than that imposed as long as my performance
request was satisfied [6].

Modeling and Simulation of Microsystems 2001, (www.cr.org), ISBN 0-9708275-0-4. 519

3 SIMULATION FRAMEWORK

INPUTFILE
o Set the FACTORS and range of variations
o Select a DOE Method
o Skeleton of basic external simulator input files
e Set the RESPONSES
* MC simulator command sequences

J

-

Perform simulations

-

Collect all relevant output data (RESPONSES)

-

Train Neural Interpolator

-

Evaluates the RESPONSES in other points

-

Build the RSM

Figure 1: The used simulation framework

Of course some aspects should be commented. First,
this approach is efficient only if the total number (N) of
points that are to be simulated is very high. Then, it
make sense to select from them only the relevant ones
or in any case a number M significantly smaller than N.
As the selection criteria can be used a DOE strategy
linked with a classic PCA (Principal Component
Analysis) or NPCA (Nonlinear PCA) algorithm, the last
above very well suited especially in multidimensional
non-linear spaces. The problems often raised in training
phase are avoiding blocking in a local minimum,
avoiding slow convergence speed or non-convergence
and maintaining a low overhead on computing
resources (memory, CPU time etc.) [6]. Solutions to
this problems were mentioned also in the second
chapter and many of them are fully functional in today
simulations tools with very good results.

As developing platform for the neural interpolator
(NI) we used MatLab 5.1 with Neural Networks
Toolbox and as Monte-Carlo solver a bulk Monte Carlo
simulator.

The neural network was build from three layers (one
hidden layer) with LI-L2-L3 (LI factors, L3 targets and
L2 hidden neural cells). This neural structure was
trained using a Levenberg-Marquardt algorithm with a

MSE (Mean Squared Error) performance function C(w).
Neural cell transfer function used was a biased sigmoid.

4 RESULTS

We applied this approach to bulk Ga;.In;As
analyzing/extracting three output parameters
(responses) as functions of three variables (factors): the
mole fraction (x), the doping concentration (Np) and
the intensity of electric field. The set of responses
consisted of the average electron velocity in the
direction of electric field (AEV), average electron
energy (AEE), effective electron mass (EEM). The train
set was obtained by running a bulk Monte Carlo
simulator for 27 sets of factors given by a 3 level full
factorial DOE.

Following consequently the purpose of increasing
speed we choose to build separate (architectural
identically) network structures for each parameters
therefore the correlation existing between output
parameters was neglected. This approach is somehow
similar with the clustering technique used in some
neural architectures (this prevents a mutual negative
influence of various output parameters with different
ranges, eliminates undesired connection redundancy
and speeds up training process). It is worth to mention
that even in these circumstances the memory amount
required for keeping a number of seven or eight
network structures is not relevant.

In Figure 2 is shown the AEV versus electric field
for an arbitrarily set of input values (x=0.275 and
Np=1.e15cm™) not considered in the train set. The
training time was 2.86 seconds, test time was 0.05
seconds (train error 0.005, test error 0.0036). The
average speed-up calculated for 10 extractions was 7.81.
Similar performance was encountered for the AEE
(Figure 3) and EEM (Figure 4).

25 ® MC simulated
NI extracted

Average electron velocity [1.e7cm/s]

|-

0'0 Il I 'l i
0 S 10 15 20 25 30

Electric field [kV/cm]

Figure 2: The average electron velocity versus
electric field for x=0.275 and Np=1e15 cm™

520 Modeling and Simulation of Microsystems 2001, (www.cr.org), ISBN 0-9708275-0-4.

Average electron energy [eV]

o‘m 1 L 1 1 1 - J
0 5 10 15 20 25 30

Electric field [kV/cm]

Figure 3: The average electron energy versus
electric field for x=0.275 and Np=1e15 cm™

035
0.30
0.25
0.20
0.15

0.10

Effective electron mass

0.05

-

0 S 10 15 20 25 30
Electric field [kV/cm]

0.00

Figure 4: The effective electron mass versus
electric field for x=0.275 and Np=1e15 cm™

In Figure 5 and 6 are shown the AEV and AEE
empirical models build by the neural interpolator versus
mole fraction and electric field. The response time in the
case of a single point was practically 0.05 seconds with a
test error of 0.01.

L.eTem/s

T 03
02 .
Mole fraction

Figure 5: The average electron velocity versus
electric field and mole fraction for Np=1e15 cm™

Mole fraction

Figure 6: The average electron energy versus
electric field and mole fraction for Np=1e15 cm™

5 CONCLUSIONS

We developed a technique for building RSM using a NI
based on a multi-layered perceptron feed-forward
architecture trained with a quasi-Newton algorithm. The
training data set was selected using DOE principles. This
technique was assessed on modeling the average electron
velocity, energy and effective mass for bulk In,Ga; ,As as
functions of mole fraction, electric field and doping
concentration.

By coupling a bulk MC simulator and the NI in a
simulation framework we obtained an efficient speed-up
methodology.

ACKNOWLEDGEMENTS

The Romanian Academy is kindly acknowledged for the
financial support of this work.

REFERENCES

[1] R. Myers, AL Khuri, and Jr. W.H. Carter, "Response
Surface Methodology", Technometrics, 31(2):137-157, 1989.

[2] W. Schoenmaker and R. Cartuyvels, "Theory and
Implementation of a New Interpolation Method Based on
Random Sampling”, IEEE J. TCAD. URL:
http://tcad.stanford.edu/tcad-journal/archive/, 1997.

[3] B. Govoreanu, W. Schoenmaker, G. Kopalidis, O.
Mitrea, G. Dima, and M.D. Profirescu, "A Hybrid Technique
for TCAD Modeling&Optimization”, IEEE J. TCAD. URL:
http:/ftcad.stanford.edw/tcad-journal/archive/, 2000.

[4] DJ.C. MacKay, "Bayesian Interpolation”, Neural
Computation, 4(3):415-447, 1992.

[5]1 B. Govoreanu, J. Suykens, W. Schoenmaker, C. Amza,
G. Dima, J. Vandewalle, and M.D. Profirescu, "A Comparison
Between Various Empirical Models for TCAD Purposes”
Proceedings of CAS2000, pp. 315-318, 2000.

[6] J.A. Freeemam and D. M. Skapura, “Neural Networks—
Algorithms, Applications and Programming Technique”,
Addison-Wesley Publishing Company, New York, 1991.

Modeling and Simulation of Microsystems 2001, (www.cr.org), ISBN 0-9708275-0-4. 521

