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ABSTRACT

We describe recent developments in the design of nu-
merical methods for the simulation of heat transport
and chemical processes in flow reactors. For viscous
flow in the low-Mach-number regime, we use a stable
finite element method for discretizing the compressible
Navier-Stokes equations which is oriented by the incom-
pressible limit case. The flow and chemical equations
are solved as a fully coupled system by an adaptive de-
fect correction method. This approach is illustrated by
several examples of flow reactors including a case with
steep temperature gradients. The efficiency and predic-
tive capability of our codes are verified by comparison
with traditional ad-hoc methods and experimental data.

Keywords: flow reactors, finite elements, low-Mach
number flow, hp-method

1 INTRODUCTION
1.1 The Mathematical model

The reactive flows considered in this paper are de-
scribed by the compressible Navier-Stokes equations in
the “low-Mach-number” approximation. Here, the pres-
sure p is split into a thermodynamic part Py, which
is constant in space, and a hydrodynamic part ppyq,
which alone is used in the equation of state. We denote
by D;:=8; +v-V the material derivative. The whole
system of conservation equations written in primitive
variables (p,v,T) takes the following form:

e mass:
T™'D,T -V -v=P;'6,Py,

e momentum:
pDww — V - (uo) + Vprya = pfe,
® energy:
pcp DT — V - (AVT) — 8yphya — po: Vv = O; P,
e species:
pDyw; +V - j; = fi(T,w), i=1,--,n,,

where o := (Vv+VovT) — 2(V - v)1 is the shear-stress
tensor, c, the heat capacity, A the heat conductivity, f.

volume force and p the dynamic shear viscosity. For the
chemical reactions, we consider the formulation in mass
fraction w; of the n, chemical species. For the diffusion
fluxes j;, we only consider the mass diffusion described
by Fick’s law. Diffusion due to pressure gradient and
thermo-diffusion (Soret-effect) are neglected (see [8] for
a motivation of this simplification). The source terms
are denoted by f;(T,w). The equation of state is written
in the form

P = P, th/ RT, (1)

The time derivative of P, is obtained by first averaging
the continuity equation in space and then substituting
D,T by using (1), whereas the heating due to ppyq and
po :Vu is neglected. This leads to a linear scalar ODE
of the form:

atPth = F('l), T) Pth, (2)

where P;;(0) = Py is a given initial value (see [7] for
more details). Qur numerical approach is based on a
variational formulation of the set of conservation equa-
tions. It is obtained by multiplying the equations by ap-
propriate test functions {x,%,n} =: ¢ and integrating
over the domain Q. In the diffusion terms integration by
parts is used. Neumann-type boundary conditions are
implicitly represented by the variational formulation,
while Dirichlet boundary conditions have to be explicitly
imposed on the solution. Then the variational problem
then reads in short: Find u(t) := {T'(t),v(t), Prya(t)} €
V +up , such that u(0) = ug and

(QBeu, ¢) +a(u;¢) = F(¢) VoeV. (3)

Here, @ is a suitable coefficient matrix multiplying the
time derivatives, a(-;-) is the semi-linear form corre-
sponding to the variational formulation of the station-
ary terms of the conservation equations and V is an ade-
quate function space. The right-hand side F'(-) contains
the slave variable P, given by the relation (2), while
p is determined through the modified gas law (1). The
term wup represents prescribed boundary data.

1.2 Finite Element Discretization

Our Navier-Stokes solver uses a fully implicit ap-
proach for solving the “low-Mach-number” approxima-
tion of the compressible Navier-Stokes system (3) (for a
detailed description we refer to [2], [3]).
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The Galerkin finite element method is defined on
quadrilateral/hexahedral meshes 7, = {K} covering
the domain . The trial and test spaces V;, C V con-
sist of continuous, piecewise polynomial vector functions
(so-called Qp-elements) for all unknowns, i.e., p|x € Qs,
vk € Qr, and T|x € Qr,. Here, Q is the space of
(isoparametric) tensor-product polynomials of degree k.
The corresponding discrete trial and test spaces are de-
noted by V;, C V. In order to facilitate local mesh refine-
ment and coarsening, we allow the cells in the refinement
zone to have nodes which lie on faces of neighboring cells
(Fig. 1). The degrees of freedom corresponding to such
“hanging nodes” are eliminated from the system by in-
terpolation enforcing global conformity (i.e., continuity
across interelement boundaries) for the finite element
functions.

Figure 1: Mesh patch with a “hanging node”

We note that by choosing the trial functions for the
pressure of (sufficiently) lower degree than of those for
the velocity the form a(-;-) is stable on the discrete
spaces Vj (uniformly in k), i.e., it satisfies the uni-
form “Babuska-Brezzi inf-sup-stability” condition. This
particularly guarantees a stable approximation of the
pressure. For the elements @2/Q1 and more generally
Qp/Qp-2, for p > 2, this condition is fulfilled. In the
case of equal-order trial functions for v and p, e.g., the
popular @;/Q;-ansatz, the scheme requires “pressure
stabilization”. In addition, the dominant convection is
stabilized by the usual SUPG approach “streamline dif-
fusion” (see e.g. [6] for more details).

2 SOLUTION APPROACH

The solution process consists of several nested loops.
The outermost loop is an implicit time iteration for non-
stationary reactive flows. The nonlinear system arising
on each steps is solved by means of a quasi-Newton it-
eration. Each Newton step requires the solution of a
linear system. The Jacobian is explicitly derived from
the finite element discretization and has a sparse struc-
ture. We consider the preconditioned GMRES (Gener-
alized Minimal Residual) method which applies to non-
symmetric and indefinite matrices in order to solve this
linear system. The preconditioner is based on multi-
grid techniques. This is a key feature of the overall
solution process since for the purely diffusive case (e.g.
Laplace equation) its CPU costs grow only linearly with
the number of unknowns in contrast classical purely
algebraic approaches. The main idea of the multigrid

method is based on the ability to derive relatively cheap
methods so called smoothers that can damp high fre-
quency modes of the error on a given grid. Considering
the hierarchy of all available grids allow to damp all
frequencies of the error. In our approach, we consider
blocking techniques for the smoothers based on the res-
olution of a local problem. The overall solution process
is then as follow:

e Implicit time stepping.
e Nonlinear steps.

— Quasi-Newton (line search Strategy).
o Linear solver.

— Iterative solution by GMRES.
— Preconditioning by multigrid methods.
— Smoothers based on blocking techniques.

In computing really nonstationary flows the full coupling
may be lifted by “operator splitting”.

3 APPLICATIONS

3.1 Preamble

The goal of this section is to validate the previously
described solution approaches considering applications
with increasing difficulties. We emphasize the efficiency
and predictive capabilities of the resulting codes by com-
parison with traditional methods as well as experimental
data. We concentrate on cases which require a fully im-
plicit solution process due to stiff coupling of unknowns.
The considered applications as well as their intrinsic dif-
ficulties are depicted in the following:

¢ Heat driven cavity: The difficulty of this prob-
lem is the large temperature gradient which leads
to a highly nonlinear behavior including sharp bound
ary layers. This problem has been proposed as
benchmark in order to validate and compare the
performances of different codes. This problem does
not involve chemical reactions and allows therefore
to enlight the capabilities of the flow components
in the low-Mach-number regime of the code.

e Chemical reaction in a mixing unit (test
case): The goal of this academic problem is to
compare the efficiency of a general purpose ad-hoc
simulation software with our codes for a simple
configuration of reactive flow. Besides the large
differences in computation time, it is important to
notice the scaling of the CPU time with the num-
ber of unknowns.
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e CARS experiment: The CARS (Coherent Anti-
stokes Raman Spectroscopy) experiment involves
high efficiency standards for the simulation in or-
der to make parameter identification feasible in a
reasonable time. We illustrate the capabilities of
the hp-finite element method in that context.

If not explicitly mentioned, the presented examples are
computed with the C++ FEM code HiFlow (see [5]).

3.2 Heat driven cavity

The discretization described above has first been tested-

for various model problems of interior flows including a
new heat-transfer benchmark “temperature-driven cav-
ity” for Ra = 10® comprising large temperature gradi-
ents (Fig. 2).
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Figure 2: Configuration of the “temperature-driven cav-
ity” flow benchmark (top), velocity norm (middle) and
temperature isolines (bottom).

Table 1 shows some representative results. It turns

out that higher-order finite elements have good poten-
tial for accurately computing interior flows even in the
presence of strong layers. The solution of the algebraic
problems is the bottleneck in using higher-order finite
elements within implicit flow solvers. This problem is
tackled by using hierarchical multilevel techniques with
blockwise smoothers.

FE ansatz | #cells #dofs # entries | CPU time
Q2/Q1 16,384 | 214,788 | 12,069,136 2,434 s

Q3/Q1 | 4,096 | 115,972 | 9,558,544 973 s
Q4/Q2 | 1,024 | 54,148 | 6,587,904 602 s
Q5/Q3 256 | 22,084 | 3,707,536 633 s

Table 1: Accuracy of higher-order finite elements for
solving the “temperature-driven cavity” problem with
Ra = 10°% and Sutherland’s law for the viscosity (error
~ 1%, reference Nusselt number Np = 8.6866).

3.3 Chemical reaction in a mixing unit
3.3.1 Academic test case

The flow domain is a rectangular channel of length L =
2cm and width [ = 0.5mm. At the inlet the parabolic
velocity profile (with 1m/s) and a constant tempera-
ture T3, = 273.15K are prescribed. The side walls are
assumed to be adiabatic. The chemical reaction con-
tains 6 species with 2 exothermal reactions at strongly
differing time scales. The goal is to compute the maxi-
mal temperature in the resulting stationary flow. This
very simple test problem leads to very different CPU
requirements by the codes considered. We particularly
compared the commercial general purpose code CFX-4
against the academic research code GASCOIGNE (see
[1]) developed at the university of Heidelberg. The com-
putations have been done on a HP-9000 with 240 MHz
and a SUN UltraSparc 333 MHz, respectively.

# unknowns CFX-4 | Gascoigne Trmaz
2000 | 30 min. 1019.93

2500 2 min. | 1022.17

5000 | 240 min. 1019.91

9500 6 min. | 1019.29

37000 14 min | 1018.41

Table 2: Comparison of the CPU-time (in sec.) needed
for the test case 3.3.1

3.3.2 CARS (Coherent Antistokes Raman Spec-
troscopy) experiment

The goal of this experiment is the measurement of el-
ementary relaxation processes and vibrational energy
transfer in collisions of vibrationally excited hydrogen
and deuterium molecules. Spatially resolved axial and
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radial concentration profiles of both species are obtained
at room temperature using coherent anti-stokes Raman
spectroscopy (CARS) in flow reactor (see Figure 3). The
wall deactivation probability and the thermal rate con-
stants for vibrational energy transfer of the reactions

=€ & B,
H§U=1) +D£u=0) - Héu:O) +D§u=l),

respectively, are derived from the detailed numerical
simulation through an optimization procedure (see [4]
for a more detailed description). In the following, we
concentrate on a single step of this optimization scheme
which corresponds to the simulation of the overall re-
active flow for given rate constants. The considered re-
action mechanism includes 32 reactions and involves 9
species.

A comparison is made on computations on tensor prod-
uct meshes which are globally refined with varying poly-
nomial degrees (p-method) and on locally refined grids
with varying polynomial degrees (hp-method) (see Ta-
ble 3). The criteria for the local refinement of the grid
are based on techniques relying on the a posteriori error
estimation corresponding to a sensitivity analysis of the
problem with regard to a given functional (see [2]). In
our case this “error-control” functional is naturally cho-
sen as the mean value of the error along the cross section
of the measurement line. The resulting grid is shown in
Figure 4. The computations described in Table 3 have
been done on a PC (Pentium III, 500 MHz).

Measurement line

Calculation field

Figure 3: Configuration of the flow reactor

=1) .
¥=1) in the flow reactor on

Figure 4: Mass fraction of Dg
an adaptively refined mesh.

| Refinement | FEM ansatz | #dofs | CPU time
global Q2/Q1 380,432 | 160 min.
global Q3/Q1 148,403
global Q4/Q2 | 102,506

[ bp | hposos | 43404 | 48 min, |

Table 3: Needed number of degrees of freedom in order
to reach an error smaller than 10% compared to experi-
mental data with regard to the concentration of D§"=1)
on the measurement line.
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