A Qualitative Study on Global and Local
Optimization Techniques for TCAD Analysis Tasks

T. Binder, C. Heitzinger, and S. Selberherr

Institute for Microelectronics, TU Wien, Gusshausstr. 27-29
A-1040 Vienna, Austria, Thomas.Binder@iue.tuwien.ac.at

ABSTRACT

We compare the two well-known global optimization
methods, simulated annealing and genetic optimization, to
a local gradient-based optimization technique. We rate the
applicability of each method in terms of the minimal achiev-
able target value for a given number of simulation runs in an
inverse modeling application.

The gradient-based optimizer used in the experiment is
based on the Levenberg-Marquardt algorithm. The actual
implementation (Immin) was taken from MINPACK [1]. The
genetic optimizer (genopt) is based on GALIB [2]. For the
simulated annealing [3] optimizer (siman) an implementa-
tion by L. Ingber was taken. All optimizers are capable of
evaluating several targets in parallel.

Keywords: Optimization Techniques, Inverse Modeling,
Simulation, Semiconductors, Microelectronics

1 INTRODUCTION

In our inverse modeling experiment the dopant concen-
tration profile of an NMOS transistor should be identified.
We use the deviation of computed IpVp and IpVg curves
from measured ones as a target for optimization. The tar-
get function as delivered to the optimizer is determined by
V(Z-%) /N where Z is the N-dimensional error vector.
The error vector is computed as a modified relative error:
100 - (1 - I./I) for I. < I, and 100 - (I, /I, — 1) oth-
erwise [4], where I, and I, denote the computed and mea-
sured currents, respectively. The dopant profiles are approx-
imated by Pearson Type IV functions as described in [5].
Fig. 1 shows the two-dimensional model of the device un-
der consideration. The elliptically shaped regions denote the
analytical dopant concentrations. Fig. 2 shows a plot of the
donor and acceptor concentrations and the geometry of a typ-
ical device. A total of 27 free parameters was optimized. In
order to utilize a cluster of workstations we used our sim-
ulation environment SIESTA [6], [7] to distribute the com-
putational load. For the extraction of the curves the device
simulator MINIMOS-NT [8], [9] was used.

SOURCE | | GATE] [DRAN

Ni N r N

N2 N

X-Axes

Y-Axes

BULK

Figure 1: Two-dimensional device model with analytical
doping peaks

2 OPTIMIZERS
2.1 Gradient-Based Optimizer

A gradient-based optimizer approximates the target func-
tion by a terminated Taylor series expansion:

£ +8) m (@) + (V(@))TE + 587V (E0)E ()

The actual optimization is performed iteratively. The di-
rection and step width are determined by numerically com-
puting the JACOBIAN and HESSIAN matrices of the target
function. Our optimizer uses a finite-difference approxima-
tion of the first derivatives thus two evaluations for each pa-
rameter are necessary. The second derivatives are computed
by using the gradient of the recent and of the last step and
the HESSIAN of the last step (Broyden-Fletcher-Goldfarb-
Shanno update [10]). The evaluations are independent from
each other which means they can be carried out in parallel.
The dependence of the number of evaluations on the num-
ber of free parameters limits the scalability of the optimizer
and thus the utilization of the workstation cluster (for a small
number of parameters).

The performance of the gradient-based methods
strongly depends on the initial values supplied. Several
optimization runs with different initial guesses might be
necessary if no a priori knowledge (e.g., the result of a
process simulation) about the dopant concentration profile

466 Modeling and Simulation of Microsystems 2001, (www.cr.org), ISBN 0-9708275-0-4.

[SUNEEAN

Figure 2: Plot of device with donors and acceptors

100 T T T T T T
90 E
80 E

70 1

3
o 60 E
>
o 50 F J
)
) 40 b
3
30 f 1
20 min: ~15
10 E
0 L L . . . L
0 100 200 300 400 500 600 700

Nr of Evaluation

Figure 3: Progress of the gradient-based optimizer

is applied. Fig. 3 shows the evolution of the target values
for a certain initial guess. In this example the optimizer
was stopped at a local minimum. Care must be taken to
provide physically sound bounds for all parameters to avoid
simulation failures.

2.2 Genetic Algorithms

Genetic algorithms go back to [11]. A genetic algorithm
(GA) is a so called population based search strategy. GA’s
maintain a set of points (genomes) in a function space. When
the optimizer is started an initial population of genomes is
chosen. The parameters of the genomes are initialized ran-
domly but within given bounds. The fitness of the individuals
in the population is then computed (in our case by means of a
device simulation). The simulation result i.e. the target value

Parents Childl Child2

//

Figure 4: Crossover Operator

is used for selecting individuals for reproduction. The library
(GALIB) we used supports four different flavors of genetic
algorithms namely SIMPLE (as described in [12]), STEADY-
STATE, INCREMENTAL and DEME. They differ in the way in-
dividuals are selected for mating, dying and for surviving. In
case of the SIMPLE genetic algorithm the whole population is
replaced each generation. The STEADY-STATE algorithm re-
places only a part of the population. Some of the individuals
survive into the next generation. The replacement percent-
age defines how many individuals are replaced. In the IN-
CREMENTAL algorithm each generation consists of only one
or two children. Finally, the DEME algorithm evolves several
populations independently each with a STEADY-STATE algo-
rithm. Each generation some individuals are migrated across
the populations.

Genetic Reproduction

Reproduction is controlled by mutation and crossover op-
erators. Crossover defines the procedure for generating a
child from two parents. The crossover probability (Pcross)
is used to decide whether the parents or their children are
taken over into the next generation. Fig. 4 shows the one-
point-crossover method, where a point is chosen randomly to
determine which part of the genome to take from mother and
father respectively. GALIB supports several crossover meth-
ods. For our experiments we used the one-point-crossover
and two-point-crossover algorithms. For the optimization
task crossover is the attempt to find better individuals by
combining the parameters of the best individuals so far.

Mutation introduces new genetic material into a popula-
tion. Mutation occurs with the probability Pry:. One pa-
rameter in a genome is replaced by a randomly chosen value
(within the allowed range).

Genopt

Our genetic optimizer (genopt) is written using GALIB.
For our application we obtained the best results with the
STEADY-STATE algorithm. We used a replacement percent-
age of Prepiace = 0.7 and a population size of 40. Since

Modeling and Simulation of Microsystems 2001, (www.cr.org), ISBN 0-9708275-0-4. 467

100 T T T T T T
90 E
80 . 1
+ + + +
+ + B
+ £ o+ " + +
70 F . M t he 4-‘: * * o+ T * 4
Q Ea T A + T 4 PN + ‘J‘ '4 + et
3 Ba+, Hte T haew 7 “’gd gt ey T
I g e LIRS
> -t 3:" ‘*-:‘+{$:' ¢:+ R S
Fe) 50 F '+ ;"¢¢t¢,‘:’ ++ ‘¢§+ e b + :: "+ “”"
[e+ ot .+ + 4 + ot + +
o ":-g}“ +ra ‘+*F""*:»’ EDREIN RPN +tty LIPS
N 40 F+L o+ 47 . + & +E +Te 4 -
o] + Fo e " PR * + o+
= . N AR, ‘{ I +
30 + " LTS *{*‘g:."‘,,’ AT o+ * 4
+ + +. +
e R By S et
L v+ AR
20 : RV LRt Ky
10 min: ~12 1
0 L " L . L I
0 100 200 300 400 500 600 700

Nr of Evaluation

Figure 5: Evolution of the genetic optimizer for Peress =
0.9, Pt = 0.2 and two-point-crossover

100 prrva st r-as sty G i s
+ PR A
R P . . -
90 ru + + * + E
* t. Teom + + +
- + o+ -+ + + * .
80 f 4 * o ot LR
+§ . LRSI EXTRC I S . R
70k & A o, . + ., L
° ~ * ¢ + o, fp‘:"g’*»* + :,‘w ““ + *‘+
+ + - + + +
= R T wwe L e YRR
o 60r; Rl o BRI PR JLE VA e
3 DU O e R R P A A T,
N R P S e ¥ pe
2 SOF+ S+t ™ EER - SL e RSy
+ + o o+
o ;V - ot 40 wah ot ++ ‘4‘:, + Y
S 40 F et A P P
© r + " + *+ + +
= - o - HE o+ + .
30 RS M I had +
L P 4
. i R T
+
20 F
min: ~18
10 - -
0 L .
0 100 200 300 400 500 600 700

Nr of Evaluation

Figure 6: Evolution of the genetic optimizer for Perpss =
0.8, Ppyut = 0.3 and one-point-crossover

GALIB does not support parallel target evaluation our opti-
mizer takes care of evaluating several jobs in parallel.

The parameters of genopt with the most impact are the
crossover probability P.r.ss and the mutation probability
Py¢. Several experiments with different crossover and mu-
tation probabilities were carried out. Fig. 5 and Fig. 6 de-
pict the evolution of the genetic algorithm for two differ-
ent combinations of crossover and mutation probability and
crossover method. The solid line is a plot of the best individ-
ual of each generation. Note that the best individual within
a population sometimes occurs at a lower evaluation number
thus appearing below the solid line.

The parameter combination depicted in Fig. 5 leads to the
best result for our application.

2.3 Simulated Annealing

Simulated Annealing is an optimization technique which
was first introduced by Kirkpatrick in 1983 [13]. It is com-
prised of three functional relationships: The generation func-

tion g(&), where £ = {z%;i = 1, D} with dimension D, the
acceptance function h(Z) and the annealing schedule func-
tion T'(k) with the time step k. The optimization itself takes
place iteratively. Initially, the algorithm starts from a ran-
domly chosen point from which the fitness is computed. Next
a new point is chosen using g(Z). In case the fitness of this
point is better than the fitness of the other one, the new point
is taken over. In case the fitness is worse the point is accepted
by a probability ~(Z). Another point is always chosen based
on the best point so far. With each iteration the probabilities
for large deviations from the best point and for acceptance
decrease. This results in a behavior where distant points are
explored at the beginning (high temperature) but not gener-
ated or rejected respectively as the temperature cools down.

For the standard Boltzmann Annealing g(Z), k(%) and
T (k) are given by:

D AR
9@ = (@rT)"% exp (~—2;) : @
1
h(Z) =) 3
@ 1+exp (—“‘——E" }—E'“)

with the deviation AT = Z — &y of the new state from the
previous one. It was shown [14] that a global minimum will
be found if the temperature is decreased no faster as given

by (4).

Siman

Our simulator (siman) is based on the VERY FAST SIMU-
LATED RE-ANNEALING [3] algorithm by L. Ingber. The al-
gorithm defines a generation rate which allows for an expo-
nentially decreasing time step function:

Ti(k) = Tosexp (—cik))

with ¢; = m; exp (— %ﬂ) , where m; and n; are tuning param-
eters. The values T; are the initial annealing temperatures.

To account for different sensibilities of the parameters
the algorithm periodically re-scales the annealing time k.
The range over which the more insensitive parameters are
searched is stretched out with respect to the more sensitive
parameters (RE-ANNEALING).

Fig. 7 shows the progress of siman. Standard parame-
ter settings were used. Compared to genopt this optimizer
reaches the same target value within approximately one third
of evaluations.

3 CONCLUSION

We conclude that among the global optimization
strategies we evaluated, simulated annealing seems to be

468 Modeling and Simulation of Microsystems 2001, (www.cr.org), ISBN 0-9708275-0-4.

100 T T e » TPy o
* ~ * + + o+
+ . ot +
90 | + ot N
+ o+
+ ++ + . h o‘ +
80 + -
oot + * o -
+
+ - +
70 Fal Y. *
] - + *
o+ + + - + + +
'3 60 & -t + -+ ¥
M "+ + +
[“ * “« ot - tow Tat LR Rape
S Lot o+ ata . + + + + + +
+ -
o 50+ *, 0,.2*;0 P + + e, 4. + LS
& s+
28 A LTSS ST S TR
L 2 + -+ N
g 40 F ™% P t . »-114 ot .
[+ o e e+ PR PRSP IRAE
P R A T I N S S TR
+ 4
AN ." v A * t‘.. MR ++ e ‘:““ 1
N P - JUPTE ++
#2374 Y + + 1 + 1T PO A
20 kv o+t b Fte ‘3;."’*“:'& + *’f A R A AT
+ ha Y & ~ hht + + ¥ *
OB Pt D
“ T 4
10 b A PO LD S]
min: ~8
0 2 L L L !
0 100 200 300 400 500 600 700

Nr of Evaluation

Figure 7: Evolution of the simulated annealing optimizer

best suited for the case of our inverse modeling application.
We observed that for a larger number of evaluations (sev-
eral thousands) siman delivered nearly optimal target values,
whereas genopt’s optima did not drop below a certain value.
This calls for further experimenting with P.ross and Py
and other parameters during the evolution. However, the op-
timal settings for these parameters are difficult to extract. We
found that the VERY FAST SIMULATED RE-ANNEALING al-
gorithm is faster than the STEADY-STATE genetic algorithm
by at least a factor of three. This conforms to the experi-
ments done by L. Ingber [15] who reports a speed difference
of about one magnitude.

The local gradient-based method is the fastest if the initial
guess is chosen appropriately but stops in a local minimum
or even fails to converge. In this case the whole optimization
must be restarted with a different initial guess.

Compared to a local optimizer the presented global opti-
mization techniques demonstrate robust optimization strate-
gies which are essential in cases where an appropriate initial
guess is not available.

Further investigations will combine the advantages of
global and local optimization techniques. One could imagine
a scenario where for each globally found target value below
a certain limit (e.g. 15), a separate local optimizer is tried for
a certain time period. This combines the robustness of the
global technique with the speed of the local one.

ACKNOWLEDGMENT

This work is supported by the “Christian Doppler
Forschungsgesellschaft”, Vienna, Austria.

REFERENCES

[1] J. J. Moré, D. C. Sorensen, K. E. Hillstrom, and B. S .
Garbow, The MINPACK Project,, Sources and Develop-

ment of Mathematical Software. Prentice-Hall, Engle-
wood Clifs, NJ, 1984.

[2] M. Wall, “GAlib A C++ Library of Genetic Algorithm
Components,” Massachusetts Institute of Technology,
2000, http://lancet.mit.edu/ga.

[3] L. Ingber, “Very Fast Simulated Re-Annealing,” Math-
ematical Computer Modelling, vol. 12, pp. 967-973,
1989, http://www. ingber.com/
asa89 vfsr.ps.gz.

[4] R. Plasun, Optimization of VLSI Semiconductor De-
vices, Dissertation, Technische Universitit Wien,
1999, http://www.iue.tuwien.ac.at/diss/
plasun/diss-new/diss.html.

[5] S. Selberherr, Analysis and Simulation of Semiconduc-
tor Devices, Springer, Wien, New York, 1984.

[6] R. Strasser, R. Plasun, and S. Selberherr, “Practical in-
verse modeling with SIESTA,” in Simulation of Semi-
conductor Processes and Devices, Kyoto, Japan, Sept.
1999, pp. 91-94.

[7] C. Heitzinger and S. Selberherr, “An Extensible TCAD
Optimization Framework Combining Gradient Based
and Genetic Optimizers,” in Proc. International Sym-
posium on Microelectronics and Assembly, Singapore
2000, pp. 279-289, Nov 2000.

[8] T. Grasser, V. Palankovski, G. Schrom, and S. Selber-
herr, “Hydrodynamic mixed-mode simulation,” in Sim-
ulation of Semiconductor Processes and Devices, K. De
Meyer and S. Biesemans, Eds., pp. 247-250. Springer,
Leuven, Belgium, Sept. 1998.

[9]1 T. Binder, K. Dragosits, T. Grasser, R. Klima,
M. Knaipp, H. Kosina, R. Mlekus, V. Palankovski,
M. Rottinger, G. Schrom, §S. Selberherr, and
M. Stockinger, MINIMOS-NT User’s Guide, Insti-
tut fiir Mikroelektronik, 1998.

[10] W.T. Vetterling and S.A. Teukolsky,
Recipes, Cambridge University Press, 1986.

[11] J. Holland, “Adaption in Natural and Artificial Sys-
tems,” University of Michigan Press, Ann Arbor, MI,
1975.

[12] D.E. Goldberg, Genetic Algorithms in Search and Op-
timization, Addison-Wesley Pub. Co., 1989.

[13] S. Kirkpatrick, C.D. Gelatt Jr, and M.P. Vecchi, “Op-
timization by Simulated Annealing,” Science, vol. 220,
no. 4598, pp. 671-680, 1983.

[14] S. Geman and D. Geman, “Stochastic Relaxation,
Gibbs Distribution and the Bayesian Restoration in Im-
ages,” IEEE Trans. Patt. Anal. Mac. Int., vol. 6, pp.
721-741, 1984.

[15] L. Ingber, “Genetic Algorithms and Very Fast Simu-
lated Re-Annealing: A Comparision,” Mathematical
and Computer Modelling, vol. 16, pp. 87-100, 1992,
http://www.ingber.com/asa%2 saga.ps.gz.

Numerical

Modeling and Simulation of Microsystems 2001, (www.cr.org), ISBN 0-9708275-0-4. 469

