Modeling of Ionic Hydrogel Kinetics in Buffered Solutions
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ABSTRACT

In this paper, we present the meshless Finite Cloud
Method (FCM) for the solution of a time-dependent
partial differential equation governing ionic gel swelling.
Using a point distribution, FCM constructs interpola-
tion functions without assuming any connectivity be-
tween points. A collocation approach forces the un-
knowns at every point to satisfy the governing equation
or boundary condition.

To validate the model, a cylindrical hydrogel was fab-
ricated and subjected to step changes in solution pH to
characterize the hydrogel’s dynamic behavior. The hy-
drogel’s equilibrium behavior was matched using a ther-
modynamic model. Numerical results show good agree-
ment with experimental data.

Keywords: hydrogels, simulation, swelling, experi-
ments, meshless method

1 INTRODUCTION

Ionic hydrogels are composed of a crosslinked poly-
mer network containing ionizable groups immersed in an
aqueous solution. Hydrogels are capable of undergoing
large reversible deformations in response to changes in
several environmental factors [1]. Hydrogel size is sen-
sitive to solution pH, salt concentration, temperature,
and electric fields. Special modification of the polymer’s
structure can also lead to gels that are sensitive to spe-
cific biological agents [2]. The properties of hydrogels
have already been exploited in a number of applications
including control of microfluidic flow, muscle-like actu-
ators, filtration, separation, and drug delivery. To effi-
ciently design and optimize hydrogel performance, accu-
rate models of gel kinetics are needed. In this paper, we
develop and solve a nonlinear chemical diffusion equa-
tion using the meshless Finite Cloud Method (FCM) to
predict gel swelling/deswelling kinetics.

FCM is a meshless method based on a fixed kernel
approximation. Interpolation functions are constructed
from a point distribution that approximates the prob-
lem domain. No assumption of connectivity between
the points is made. Using collocation, each point within
the problem domain is forced to satisfy the governing

partial differential equation or an appropriate boundary
condition.

Modeling gel kinetics requires accurately describing
the diffusion of hydrogen into and out of the gel. This re-
quires taking into account the chemical reactions of the
hydrogen ions with the fixed charge groups and buffer’s
effect on hydrogen diffusion. The governing equation de-
veloped here modifies Grimshaw’s equation for hydrogel
kinetics to include the influences of pH buffer in the so-
lution [3]. The time-dependent governing equation is
linearized and solved by using the FCM in space and
a forward difference in time. Results from the numer-
ical model are compared to experimental swelling and
deswelling experiments performed on a cylindrical hy-
drogel. Equilibrium data was fit using a thermodynamic
model.

2 GOVERNING EQUATIONS

2.1 Equilibrium Model

Generally, thermodynamic models consider three con-
tributions to the free energy of a crosslinked polymer-
solvent system - polymer-solvent mixing, deformation of
the polymer network, and the osmotic pressure due to
mobile ions [4],[5]. Despite their simplicity, thermody-
namic equilibrium models do not give good quantita-
tive results [4],[6]. Many of the input parameters in the
model are difficult to determine and are often adjusted
to ’fit” the model to the gel’s equilibrium behavior. How-
ever, qualitatively, these models perform well.

At equilibrium, the chemical potential of the solution
inside and outside of the hydrogel is equal, and can be
expressed as the sum of the ionic contribution (Aw)ion,
mixing contribution (Ag)miz, and the polymer’s elastic
response (Ap)es-

(A ion = (AB)ion = (AB) iz + (AR)y (1)

The concentration difference of mobile ions inside the
gel and in the outer bath leads to an osmotic pressure
which tends to swell the gel. When the gel is placed
in an aqueous solution of sodium chloride (NaCl), the
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ionic contribution to chemical potential is

(Aiu)ion - (Aﬁ)wn =
VART [(Cxr — cg) + (Ena — cNa) + (Gt — cct)]  (2)

where V; is the molar volume of the surrounding solu-
tion, R is the universal gas constant, T is the temper-
ature, cy is the bath concentration of hydrogen, cy, is
the bath concentration of sodium, and c¢; is the bath
concentration of chlorine. ¢y, €x., and ¢¢; are ion con-
centrations in the gel. Using Donnan partitioning the-
ory, interior ion concentrations can be related to bath
concentrations through the Donnan ratio, A.

C c c
A=A _K_& (3)
CH CK Cci

Mixing represents the polymer’s tendency to sur-
round itself with solution or remain separated. The
chemical potential of mixing is given by

(Af) iy = BT [In(1 - ¢) + ¢ + x¢°] (4)

where yx is the Flory parameter which ranges from 0 to
1, and ¢ is the volume fraction of polymer.

From the statistical theory of rubber elasticity, the
elastic contribution of the polymer network to the chem-
ical potential can be calculated as [7]

o= () (- 250, [(2)' -1 (2)]

(4)

where 7 is the molar volume of the polymer, M, is the
molecular weight of the polymer chain between crosslinks,
M,, is the average molecular weight of the polymer chains
before crosslinking, and ¢, is the polymer volume frac-
tion before swelling.

Substituting equations (2)-(5) into equation (1) gives

-n [(A—l)cH+(/\-1)CK+ (;—1) CCI.
+[l7f(1—¢)+¢+lx¢2]

(@) B[00
6

Equation (6) contains two unknowns, ¢ and A. Elec-
troneutrality inside the gel provides an additional equa-
tion containing the same unknowns

?J; K, +cH

where o, is the concentration of ionizable groups in the
polymer before swelling, and K, is the dissociation con-
stant of the ionizable groups.

—‘(d)) 9oKe +)\CH+/\CK—§CCI=0 )

2.2 Kinetic Model

pH induced swelling of ionic hydrogels is a diffusion
limited process, and can be modeled by only considering
the diffusion of hydrogen ions in the hydrogel [3]. This
approach assumes that the mechanical deformation of
the polymer network occurs instantaneously compared
to the diffusion of hydrogen. The presences of buffer
in the solution increases the apparent diffusion rate of
hydrogen by providing an alternate path for diffusing
hydrogen ions into or out of the hydrogel. The conju-
gate base of the buffer reversibly binds hydrogen ions
in regions of high concentration and releases the hydro-
gen after diffusing to a region of lower concentration [6].
Buffer augmented transport of hydrogen under certain
conditions can result in apparent diffusion rates of hy-
drogen which are several orders of magnitude higher
than the diffusion coefficient of hydrogen alone [8].

The buffer’s effect on the transport of hydrogen can
be modeled by including additional terms in the conti-
nuity equation of hydrogen in the gel [3]

% (HEH-FHEbH-I-HEHB) =

_3 (al'yg + alyp)
oY

where H is the gel’s hydration (ratio of fluid to solid vol-
ume), ¢y is the internal concentration of hydrogen, ¢%
is the concentration of hydrogen ions reversibly bound
to the hydrogel’s fixed charges, Cyp is the concentra-
tion of hydrogen bound to the buffer, « is the total area
of the hydrogel normalized to its initial area, v is the
Lagrangian coordinate system associated with the hy-
drogel, I'y is the flux of hydrogen ions, and 'y p is the
flux of the hydrogen bound to the buffer. Using a re-
action isotherm, ¢yp can be expressed in terms of ¢y
by

(®)

_ Cr CH )

where Kp is the dissociation constant of the buffer and
Cr is the total buffer concentration given by ér = ¢g- +
Cyp. Cp- represents the internal concentration of the
buffer’s conjugate base. The flux of hydrogen in absence
of an electric field is

Ty

H [—D 86H] (10)

“1+H| Por
where Dy is the diffusion rate of hydrogen in the hy-

drogel. The flux of the buffer is proportional to the flux
of the hydrogen ions

Dup cr (11)

Tr = = T
HB Dy Kp+c¢cy H

where Dy p is the diffusion rate of the buffer in the hy-
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drogel. Using equations (9)-(11), equation (8) becomes

0 _ EanEH Heérey _
al:HcH-'-K-i-EH KB"‘éH]_
d H Dup _ er L
A [a(1+H) (1"' Dy Kg +5H) (DHE”

(12)

3 FINITE CLOUD METHOD

The interpolations functions employed by the FCM
are based on a fixed kernel approximation [9]. This
method uses a corrected kernel to generate an approx-
imation u®(z) to some unknown function u(z). The
one-dimensional form of the approximation is expressed
as

i (z) = /Q Da(zx — 5)u(s)ds (13)

where (2 is the domain occupied by the gel and @q(zx—s)
is the corrected kernel function given by

wa(z — 8) = C(z, s)wa(zx — ) (14)

C(z,s) represents the correction function, wa(zx — $)
is the uncorrected kernel function, and zx is any point
in the domain where the kernel is centered. In discrete
form, equation (13) can be written as

NP
u®(x) = Z Ni(z)us (15)
I=1

where NP is the number of points in the domain, N;(z)
is the interpolation function at node I, and wuj is the
unknown nodal value associated with node I. The in-
terpolation function Ny(z) is defined as

Ni(z) = C(z,zr)wi(zx — z1)AV; (16)

where AV} is a measure of the domain surrounding point
I. In this work, a cubic spline is used for the kernel
function wg. Numerical solution of partial differential
equations using the finite cloud method is discussed in
detail in [9].

4 RESULTS

Cylindrical gels were fabricated using photopolymer-
ization techniques within microchannels. The gels were
composed of HEMA with acrylic acid embedded in the
polymer chains. The rectangular cross section of the
microchannel was approximately 1000 pm wide by 180
pm high. Because the microchannel constrains the hy-
drogel’s height, the volume of the hydrogel is only a
function of diameter. All diameter measurements were
converted to hydration values.

Table 1: Equilibrium model parameters
M, 35 M.W. oo 1.0

M, | 75000 M.W. | pKa | 5.3 me

v | 0.0008 & o, | 6324
Vi | 0018:L | x 0.49

Ca 0.2 M Cne | 02M

Average Hydration
o«
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Figure 1: Comparison of numerical and equilibrium
swelling

4.1 Equilibrium Results

The equilibrium behavior of the gel was character-
ized by varying the pH of the solution and measuring
the equilibrium diameter of the cylinder using a micro-
scope with a built-in ruler. The hydrogel’s equilibrium
size with respect to solution pH was fit using equations
(6) and (7). A Newton method was used to solve for
¢ and A. Numerical parameters used in the model are
given in Table 1. For the chosen parameters, the model
is able to fit the experimental data as shown in Figure
1.

4.2 Kinetic Results

The dynamic behavior of the same hydrogel was also
recorded. Initially, the gel was equilibrated in a buffer
solution of pH = 3.0. The solution was then flushed and
replaced with a solution of pH = 6.0. In the presence of
the new solution, the gel began to swell towards its new
equilibrium diameter. Measurements of the gel’s diame-
ter were taken during the course of the experiment using
a Sony CCD camera. The experiment was stopped af-
ter the gel reached its equilibrium hydration. Deswelling
experiments were performed by returning the bath so-
lution to a pH of 3.0 and recording the gel’s diameter at
various times. Three separate swelling and deswelling
experiments were performed.

The microchannel restricts the hydrogel from expand-
ing in height direction and only allows swelling in the
radial direction. This constraint allows swelling and
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Table 2: Cylindrical hydrogel properties

Dy | 93x100= K 10721 mM
Di,po, | 879x 1072022 || Ky o, | 6.2 x 1075 mM
¢ 1800 mM do 300 ym

deswelling to be modeled as a one-dimensional diffu-
sion problem along the hydrogel’s diameter as shown
in Figure 2. Every point in the distribution used to
model the cylinder has a corresponding value for ¢y and
H. Numerical swelling simulations were started by set-
ting all points in the gel in equilibrium with a solution
of pH = 3. Using Donnan partitioning theory, initial
concentrations inside the gel can be computed. The
hydration values for the given solution pH are taken
from Figure 1. At time #;, the solution bath was in-
creased to pH = 6, and H and ¢y values at the bound-
ary were adjusted to reflect equilibrium with the new
solution. A normalized version of equation (12) was
incremented in time according to the algorithm given
in [10]. Hydration was considered to be constant over
a single time step. After finding ¢if*, H*+! can be up-
dated using equilibrium data. Deswelling simulations
were conducted in the same manner, except the solution
was initially at pH = 6 and changed to pH = 3. Nu-
merical swelling/deswelling was also performed in the
absence of buffer (i.e. ¢y = 0). The results show the
dramatic effect buffers can have on gel kinetics. Com-
parisons between numerical swelling and deswelling and
experimental results are given in Figures 3 and 4.

N

Figure 2: One-dimensional model of cylindrical hydrogel

5 CONCLUSION

The Finite Cloud Method has been applied to solve
a partial differential equation describing the dynamic
swelling and deswelling of ionic hydrogels. By includ-
ing the buffer’s effect on hydrogel kinetics, the model
was able to match experimental results. Solution to the
governing equation was obtained without generating a
mesh to discretize the problem domain. Equilibrium
data for pH induced swelling was matched using a ther-
modynamic model.
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Figure 3: Numerical and experimental swelling
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Figure 4: Numerical and experimental deswelling
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