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ABSTRACT

A particle-based approach coupled with quantum
potential corrections is very attractive for practical
simulation of nanoscale semiconductor devices.  We
present here a quantum correction approach derived from a
simplification of the Wigner function transport equation,
which is applied to Monte Carlo particle simulation of
semiconductor devices.  The quantum potential is obtained
from a first order truncation of the expansion form of the
Wigner equation, resembling the semi-classical Boltzmann
transport equation with additional terms for the driving
forces, appearing as differentials of the quantum potential
correction.  We present here several recent applications,
that illustrate the capabilities and the limitations of quantum
corrected Monte Carlo simulation.  The method is applied
to 1-D MOS capacitor structures and results are compared
with the solution of a coupled Schrödinger/Poisson solver.
Tunneling through single barriers in III-V compound
structures is also analyzed.

Keywords: Monte Carlo device simulation, quantum
correction, Wigner function, tunneling.

1 INTRODUCTION

In usual quantum approaches, the physical state of an
individual system is specified by a wave function obtained
from the solution of Schrödinger equation.  For simulation
of practical devices at normal temperatures, the use of a full
quantum method is still problematic because of the
difficulty of including realistic scattering models.  In
alternative, a particle description of quantum theory is
possible, in terms of a quantum potential correction.  In this
case, the notion of a well-defined particle trajectory is
retained, while the quantum potential correction modifies
the potential energy profile to account for quantum effects,
like size quantization and tunneling.

A particle-based approach coupled with quantum
potential corrections is very attractive for practical
simulation of nanoscale semiconductor devices.  We apply
to Monte Carlo particle simulation a quantum correction
approach derived from a simplification of the Wigner
function transport equation.  The form of the quantum
potential is obtained by considering a truncation to first
order of the expansion form of the Wigner function

equation, which resembles the semi-classical Boltzmann
transport equation with additional terms for the driving
forces, appearing as differentials of the quantum potential
correction.  For a practical implementation, it is convenient
to transform the correction terms to be a function of local
density.  Different levels of approximation for the model
can be formulated, by making the force correction a
function of energy or actual momentum components.

This paper reports on recent applications for MOS
devices and III-V compound structures.  The results
illustrate capabilities and limitations of this approach to
quantum correction.  One of our main interests is in the
simulation of MOSFETs.  In order to calibrate the effect of
quantum corrections in these systems, the approach is
applied to resolve size quantization in a 1-D MOS capacitor
structure and results are compared with the solution of a
coupled Schrödinger/Poisson solver.  Tunneling through
single barriers in III-V compound structures is also
analyzed, with specific examples that underline the
difference between quantum corrections solely based on
energy or on the momentum components.

2 QUANTUM CORRECTION MODEL

The model starts from a form of the Wigner transport
equation [1], given as
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Here, U is the classical potential distribution and the term
on the right-hand side represents the effects of collisions.
The third term on the left-hand side contains the non-local
effects on the distribution due to quantum effects.  In the
limit of slow spatial variations, the non-local terms
disappear and we recover the standard Boltzmann Transport
equation (BTE).  The approach taken here is to start by
using only the lowest order term with α = 1 in the
summation.   Following this approximation, one obtains an
equation that resembles in structure the BTE, with the



addition of a term that contains the quantum correction.
The quantum corrected BTE then takes the form
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where the term Fqc contains the quantum correction.  This
term can be derived analytically if one assumes a
distribution function and a dispersion relation for the
energy.   We have also derived a momentum-dependent
quantum corrected force [2].  Assuming a 2-D domain, this
is given below for the x-component
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This result has been obtained, in order to have smooth
potential variations, using an approximate relation obtained
by integrating the displaced Maxwellian distribution with
the momentum as
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where n is the density.  The right-hand –side substitutes the
second order derivatives of the potential U that would
appear in the correction, causing problems at potential
interface discontinuities, where typically quantum effects
are most interesting.  A simpler models uses the quantum
corrected forces as functions of energy [3], rather than
momentum, replacing momentum term with the thermal
energy, as
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3 RESULTS

The quantum correction illustrated above was applied
first to the case of a 1-D MOS capacitor structure.  Due to
the complexity and cost of the Monte Carlo simulations in
this case, we only applied the simple energy-dependent
correction model.  The MOS capacitor is the basic building
block of MOSFET devices, where size quantization takes
place in the quantum well created by the gate potential at
the silicon dioxide interface.  A classical solution of the
MOS capacitor in inversion results in a maximum of the
charge concentration at the oxide interface.

The quantum correction applied to a semi-classical
simulation modifies the potential energy, so that on the
average the particles are not as close to the interface.  In
addition, the bottom of the potential energy is lifted by the
correction, to account for quantization sub-bands.  This is
illustrated by the plot in Fig. 1, which shows a snapshot
from a Monte Carlo simulation, for a capacitor with oxide
thickness Tox = 3 nm, gate bias Vg = 1.0 V and substrate
acceptor doping NA = 2 × 1017 cm-3

.  The continuous line
indicates the potential solved by the classical Poisson
equation, and it defines the quasi-triangular well at the
oxide interface.  The simulated particles are plotted as dots,
according to position and energy.  One can clearly see that
the quantum correction prevents the otherwise classical
particles from falling to energy states forbidden by the
quantization, thus reshaping the potential energy so that the
particle ensemble mimic the overall quantum behavior.
The maximum of the charge density is now shifted from the
interface.
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Fig. 1 – Example of quantum-corrected Monte Carlo
simulation for MOS capacitor.

A set of simulations was carried on to characterize the
capacitor structures under different gate bias conditions.
Figure 2 shows the electron concentration in the direction
normal to the interface for the same structure in Fig.1, using
gate bias from 0.25 V to 3.0 V.  The figure shows Monte
Carlo results indicated by open circles.  These are
compared with results from a 1-D self-consistent
Schrödinger/Poisson solver.  The very good agreement
indicates that the quantum correction is able to capture the
most important quantum features in this system.

Although we are looking at a 1-D structure, the
simulations are carried out with the 2-D simulator MOCA
developed at the University of Illinois.  In order to resolve
completely the dynamics of semi-classical particles under
the strong interface fields, we used a very small time-step
of 2.0 × 10-18

 s.  Simulation runs were typically over several
picoseconds.  In order to achieve a good match with the
quantum solution, one also needs to ensure that the charge



density at the surface, as used in the Poisson equation
coupled to the Monte Carlo simulator, matches as much as
possible the quantum density.  This is difficult to achieve
when solving a particle system, since hardly any particle
ends up reaching the oxide interface when the quantum
correction is applied.  Observing that the quantum solution
lets some wave function leak into the oxide, we have solved
this problem by assigning a small charge layer inside the
oxide region (~10-15cm-3).  This choice seems to allow for a
proper adjustment of the interface density condition in the
wide range of biases used here.  Similar simulations were
conducted for a capacitor in accumulation regime, with the
same geometry and substrate donor doping ND = 2 × 1017

cm-3.  The results are shown in Fig. 3.
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Fig. 2 – Electron concentration in the inversion region of
the simulated MOS capacitor.
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Fig. 3 – Electron concentration in the accumulation region
of the simulated MOS capacitor.

The quantum correction scheme has also been applied to
the simulation of MOSFETs, implementing very small

structures with channel length well below 0.1 µm.  We use
as prototype the so-called “well-tempered” MOSFET
structures, developed as reference test structures by Prof.
Antoniadis of MIT.  Complete data for these devices are
posted at http://www-mtl.mit.edu/Well/.  In Fig. 4, we show
a simulation example of the electron density in a 25 nm
channel MOSFET, obtained by applying the quantum
correction scheme.  The main feature differentiating this
result from standard semi-classical simulation is the
displacement of the maximum channel density from the
interface, as expected from size quantization effects.
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Fig. 4 – Contours of electron density from simulation of a
25 nm channel n-MOSFET,

The quantum corrections can also be applied to
tunneling phenomena.  These are best explored by
simulation in III-V compound heterojunction structures,
because one create relatively small and narrow barriers.  In
these system one can also explore better the effect of the
momentum-dependence in the quantum correction, since
tunneling is quite sensitive to the actual direction of the
momentum vector.  To generate suitable reference results,
we have examined simple AlGaAs barriers embedded in a
GaAs system.  Figure 5 shows the result of Monte Carlo
simulation for the quantum correction applied to carriers
impinging against a 0.22 eV barrier of 2.5 nm thickness, in
ideal conditions of flat band equilibrium.  The effective
barrier is rounded at the top, indicating the effective
potential lowering due to the tunneling, while the potential
skirts on the side indicate the effect of quantum repulsion.
When the correction forces are taken to be function of
momentum, rather than energy, the system better represents
the quantum repulsion, while the barrier lowering by
tunneling is very similar in magnitude.

We show in Fig. 6 snapshots of the Monte Carlo
simulation under bias conditions.  The result in Fig 6(a) is
only for semi-classical simulation, while in Fig. 6(b) the
momentum-dependent quantum correction has been
included.  Tunneling through the barrier can be clearly



seen, along with size quantization effects in the small well
formed before the barrier.

Figure 5 – Quantum potential corrections for a single
GaAs/AlGaAs/GaAs barrier.

Fig. 6 – Monte Carlo simulation results for a single
GaAs/AlGaAs/GaAs barrier under bias conditions for
semi-classical  (a) and quantum corrected (b) simulation .

4 CONCLUSIONS

We have developed quantum corrections based on a
truncated expansion of the Wigner transport equation, and
we have applied them to Monte Carlo simulation of
semiconductor devices.  For simulations of MOS structures
we used simpler corrections based on energy, while a more
complete momentum-dependent correction was used to
look at tunneling in GaAs/AlGaAs/GaAs barriers.  Our
results indicated that it is practical to extend the
applicability of semi-classical Monte Carlo simulation to
nanoscale by including quantum corrections.  The cost of
simulation increases considerably when near rapidly
varying potentials very small time steps are required to
resolve the particle dynamics.  This is the case for quantum
wells at oxide interfaces in MOS systems.  The method as
presented here does not have the ability to account for
coherent effects, since the quantum corrections are still
applied to particles simulated semi-classically.  However,
we are working on an extension of the approach that could
treat resonant tunneling, thus capturing some of the
coherent effects at the basis of this phenomenon.

Acknowledgements - This work was partially supported by
the NSF Distributed Center for Advanced Electronics
Simulation (DesCArtES), grant NSF ECS 98-02730 and by
the Semiconductor Research Corporation, contract SRC 99-
NJ-726.  B.W. gratefully acknowledges the support ofn
SRC Graduate fellowship, and H.T. would like to thank
Prof. T. Miyoshi of Kobe University for his kind support
and valuable discussions.

REFERENCES

[1] E. Wigner, Phys. Rev., vol. 40, p. 749 (1932).
[2] H. Tsuchiya, B. Winstead and U. Ravaioli, 7th Int.

Workshop on Computational Electronics, Glasgow, U.K.,
May 22-25, 2000; Proceedings to appear on VLSI Design.

[3] H. Tsuchiya and T. Miyoshi, IEICE Trans.
Electron., vol. E82-C, p. 880, 1999.

0

0.1

0.2

20 25 30 35 40

Present model
Simplified model

E
ne

rg
y 

(e
V

)

Distance (nm)

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0 10 20 30 40 50 60

= -35.4meVE
1

E
ne

rg
y 

(e
V

)

Distance (nm)

Quantum
V=0.3V

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0 10 20 30 40 50 60

E
ne

rg
y 

(e
V

)

Distance (nm)

Classical
V=0.3V

(a)

(b)


