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ABSTRACT

To study a spin dependence of the electron energy
states in tree dimensional cylindrical semiconductor dots
we consider theoretically the spin-orbit interaction im-
pact on the electron quantum con…nement in the dots.
We solve the problem for InAs quantum dot embedded
into GaAs matrix with the e¤ective one electronic band
Hamiltonian, the energy and position dependent elec-
tron e¤ective mass approximation, and the spin-dependent
Ben Daniel-Duke boundary conditions. It has been found
that the spin-dependent boundary conditions lead to a
spin-splitting of the electron energy states with non zero
angular momentum. The splitting is strongly dependent
on the dot size and can gain an experimentally measur-
able value for relatively small quantum dots.

Keywords : Quantum dots, Spin-orbit interaction, Bal-
anced QR algorithm, Inverse iteration method.

1 INTRODUCTION

The study of semiconductor quantum dots (QD) in
recent years has been of a great interest from experimen-
tal and theoretical points of view (see [1] and references
therein). The semiconductor quantum dots are very at-
tractive for possible applications in micro and nano op-
toelectronics [2], [3]. Thus, the electron energy level hi-
erarchy in QDs is an object of extensive investigations.
The electron spin plays an important role in the design
of the dot electron energy levels and can signi…cantly
alter the properties of the electron energy states. A new
branch of semiconductor electronics (so called spintron-
ics) has produced much interest in the spin-dependent
energy structure of semiconductor quantum dots [4], [5].
A study of the spin-dependent energy structure can be
an essential part of semiconductor spintronics develop-
ment.

While it has been found that the spin-orbit inter-
action can impact essentially the energy state systems
and electronic properties of III-V semiconductor quan-
tum structures [6]–[9], the spin-orbit interaction e¤ect in
quantum dots is largely unknown. In this work we con-
sider theoretically the spin-orbit interaction impact on
the electron quantum con…nement in cylindrical semi-
conductor dots. We solve the problem with the e¤ec-

tive one electronic band Hamiltonian, the energy and
position dependent electron e¤ective mass approxima-
tion and the spin-dependent Ben Daniel-Duke boundary
conditions [6]. The spin-dependent boundary conditions
come from a di¤erence between the spin-orbit interac-
tion parameters in the dot and the semiconductor ma-
trix. The quantum dot has a quantum disk shape of
radius R0 and of thickness z0 and we treat the prob-
lem in cylindrical coordinates (R;Á; z). Most of calcu-
lations of the electron spectrum in semiconductor quan-
tum dots are done within one-dimensional approxima-
tions and the con…nement potential in R-direction often
approximated by a parabolic potential and in z-direction
is taken to be the in…nite out the dot. In contrast to
those works we use a realistic hard-wall (of …nite height)
three-dimensional con…nement potential that is induced
by real discontinuity of the conduction band at the edge
of the dot. To solve three-dimensional Schrödinger equa-
tion we use the balanced QR method [10] and inverse
iteration algorithm [11]. Our results show that the spin-
orbit interaction can signi…cantly modify the electron
energy spectrum of InAs semiconductor QDs.

2 SPIN-DEPENDENT BOUNDARY
CONDITIONS

We will consider electrons con…ned in three dimen-
sional quantum structures and use the approximate one
band e¤ective Hamiltonian [6]

Ĥ = Ĥ0 + V̂so(r) (1)

In equation (1): H0 is the system Hamiltonian without
spin-orbit interaction

Ĥ0 = ¡ ¹h2
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rr stands for the spatial gradient, m(E;r) is the energy
and position dependent electron e¤ective mass
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V (r) is the con…nement potential, Eg(r) and ¢ (r) stand
for the position dependent band gap and the spin-orbit
splitting in the valence band, and P is the momentum
matrix element. The spin-orbit interaction for the con-
ducting band electrons Vso(r) is described by [12]

V̂so(r) = ir¯ (E; r) ¢[b¾ £ r] ; (2)

where
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is the spin-orbit coupling parameter, and b¾= f¾ x;¾ y;¾ zg
is the vector of the Pauli matrices.

For systems with the sharp discontinuity of the con-
duction band edges between the QD (material 1) and the
semiconductor matrix (material 2) the hard-wall con-
…nement potential can be presented as

V (r) =

½
0; r 2 1
V0; r 2 2

:

From integration of the Schrödinger equation with Hamil-
tonian (1) along the direction perpendicular to the inter-
face (rn) we obtain the spin dependent Ben Daniel-Duke
boundary conditions for the electron wave function ª (r)

ª 1(rs) = ª 1(rs);

½
¹h2

2m(E;rs)
r ¡ i¯ (E; rs) [b¾ £ r]

¾

n

ª (rs) = const:;

(3)
where rs denotes the position of the system interface.
The boundary conditions above are obviously dependent
on the electron spin and originates from the di¤erence
of the spin-orbit interaction parameters in di¤erent ma-
terials.

When the quantum dot has a disk shape of radius R0

and of thickness z0 we can solve the problem with cylin-
drical coordinates (R;Á; z). The origin of the system lies
in the center of the disk and the z-axis is chosen along
the rotation axis. Because of the cylindrical symmetry
the wave function can be represented as

ª (r) = © (R;z) exp(ilÁ);

where l = 0; § 1;§ 2; ::: is the electron orbital quantum
number and the problem remains two dimensional in (R;
z) coordinates
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and the spin dependent boundary conditions (3) (for
reasons of the problem symmetry along z-axis) become
of the form
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(5)
where ¾ refers to the electron spin polarization along
z-axis.

The electron energy states are complicated functions
of the dot parameters, the electron angular momentum,
and spin. We can obtain the solution only by means of
a numerical solving of the Schrödinger equation (4) and
the boundary conditions (5).

3 NUMERICAL METHODS

There are many numerical methods have been de-
veloped for a numerical solution of the one-dimensional
Schrödinger equation and applications in atomic physics,
nuclear physics, and semiconductor microstructures (see
[13] and references therein). In this work, the energy
states and wave functions of the con…ned electrons are
found by the …nite di¤erence, balanced QR, and inverse
iteration methods. Due to the energy dependence of the
e¤ective electron mass and spin-orbit coupling parame-
ters our calculation should consists of iteration loops
to reach a ”self-consistent” energy solution. A feed-
back nonlinear iteration scheme is presented here to …nd
the ”self-consistent” numerical solution: (i) Set energy
E = 0. (ii) Compute e¤ective mass m and electron
spin-orbit coupling parameter ¯ . (iii) Solve Schrödinger
equation for energy E . (iv) Back to (ii). The iteration is
terminated when a speci…ed stopping criterion on energy
is reached. To obtain a complete numerical solution of
the three-dimensional Schrödinger equation in (iii), a …-
nite di¤erence method with nonuniform mesh technique
is …rstly applied to discretize the Schrödinger equation
(4). The discretized Schrödinger equation with spin de-
pendent boundary conditions (5) leads to an eigenvalue
problem

AX = ¸X; (6)



where A is the matrix rising from discretized Schrödinger
equation and boundary conditions, X and ¸ are the cor-
responding eigenvectors (wave functions) and the eigen-
values (energy levels) of the matrix A. To motivate our
consideration of the system (6) we consider the Schrödinger
equation (4) in a rectangular domain ­Ω= (0; RT ) £
(0; zT), where RT and zT are the arti…cial boundaries.
The arti…cial boundary conditions are applied far enough
so that it does not signi…cantly a¤ect the results. Let
h = RT =M , k = zT =N and let Ri = ih, zj = jk, where
M and N are the total number of intervals along the
R and z directions, respectively. Consider the set of
points (Ri; zj) in  Ω, we de…ne xi;j = © (Ri; zj), then the
standard central di¤erence approximation for the di¤er-
ential, spin dependent boundary conditions in (4) and
(5), and arti…cial boundary conditions leads to a …nite-
di¤erence system in the form

1

hk
(ai;jxi;j ¡ (bi;jxi¡ 1;j + ci;jxi+1;j)

¡ (di;jxi1;j¡ 1 + ei;jxi;j+1)) = ¸xi;j: (7)

In the above system the coe¢ cients ai;j, bi;j, ci;j, di;j,
and ei;j are associated with the di¤erential operator,
coe¢ cient functions, and boundary coe¢ cients. The
¸ to be determined is the corresponding eigenvalues of
the system (7). Typical choice of these coe¢ cients for
all points (Ri; zj) can be found, such as in [14]. The
system (7) may be cast in the form of a matrix equa-
tion as shown in equation (6). The matrix A in (6)
is a block tridiagonal matrix with diagonal submatrices
eA0; : : : ; eAN , and o¤-diagonal submatrices ¡ eD1; : : : ; ¡ eDN

and ¡ eE1; : : : ; ¡ eEN , respectively, and X = (X1; : : : ;XN)T .
The submatrices eAj is given

eAj =
2
666664

a0j ¡ c0j 0
¡ bij a1j ¡ c1j

.. .
. ..

.. .
¡ bM¡ 1;j aM¡ 1;j ¡ cm¡ 1;j

0 ¡ bMj aMj

3
777775

and eDj = diag(d0j; : : : ; dMj), eEj = diag(e0j; : : : ; eMj),
where j = 0;1; : : : ; N:

A number of numerical linear algebra methods, such
as QR and Davison methods [10], [15]–[17] have been
proposed to solve a class of nonsymmetric matrix. In
this work we used a balanced QR method to …nd the
eigenvalues of the problem. The matrix A, in general,
is a nonsymmetric and large sparse matrix, the eigen-
values of such matrix can be very sensitive to small
changes in the matrix elements. In order to reduce the
sensitivity of eigenvalues, we perform a balancing algo-
rithm [10] to matrix A. Then the next strategy for …nd-
ing the eigenvalue of the balanced matrix A is trans-
ferring it into a simpler form, Hessenberg form, with

a sequence of Householder transformations. An upper
Hessenberg matrix has zeros everywhere below the di-
agonal except for the …rst subdiagonal row. The eigen-
values of the Hessenberg matrix are directly computed
with QR method [10], [17]. When the eigenvalues are
found, we solve the corresponding eigenvectors with the
inverse iteration method [11]. The fundamental idea of
this method is to solve the linear system

(A ¡ ³I)y = b;

where b is a trial vector and ³ is one of the computed
eigenvalues of matrix A. The solution y will be the
candidate eigenvector corresponding to ³:

The energy spectrum of the dot consists of a set of
discrete levels numerated by the set of numbers fn; l;
¾g, n is nth solution of the problem with …xed l and
¾: States having the same value of n and parallel (an-
tiparallel) orbital momentum and spin remain two-fold
degenerate (the known Kramers degeneracy). But n
states with antiparallel orbital momentum and spin are
separated from the nth states with parallel orbital mo-
mentum and spin.

For cylindrical QDs we can use a conventional no-
tation for the electron energy states: nL¾ , where L =
S;P; D; ::: denotes the absolute value of l , and ¾ = § 1
refers to the electron spin directions in respect to the
electron angular momentum direction. For all calcula-
tions we choose the lowest energy state (n = 1).

4 CALCULATION RESULT
DISCUSSION AND

CONCLUSIONS

In calculation of the electron energy spectra for InAs
cylindrical QDs in GaAs matrix we choose the semicon-
ductor band structure parameters for InAs: energy gap
is E1g = 0:42 eV, spin-orbit splitting is ¢ 1 = 0:48 eV,
the value of the nonparabolicity parameter is E1p =
3m0P 2

1=¹h2 = 22:2 eV, m0 is the free electron e¤ective
mass. For GaAs we choose: E2g = 1:52 eV, ¢ 2 = 0:34
eV; E2p = 24:2 eV. The band o¤set is taken as V0 = 0:7
eV.

The spin splitting e¤ect is obviously zero for the low-
est energy state 1S§ 1. The dependence of the 1P energy
level splitting

¢ E1P = E1P+1 ¡ E1P¡ 1

on the dot size is shown in Fig. 1. The theory demon-
strates valuable spin splitting for small QDs. The split-
ting is strongly dependent on the dot radius and de-
creases when the radius increases. In the same time for
dots of small height the spin splitting is small. This
is a result of electron wave function tunneling into the
barrier along z-direction and energy dependence of the
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Figure 1: 1P energy level spin-splitting versus the dot
size.
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Figure 2: The ratio P versus the dot size for fn = 1;
l = 1; ¾ = ¡ 1g energy state.

electron e¤ective mass and spin-orbit coupling parame-
ters. To clarify the result we compare the electron wave
function relative weight inside and outside the dot. In
Fig. 2 we present the ratio

P =

R
r21 dr3j© (R;z)j2R
r22

dr3j© (R;z)j2

versus the dot size. For the QD of small height the
electron ”spreads” out of the dot (P » 1) the energy
level properties are controlled by band parameters of
GaAs matrix. In this situation an e¤ective di¤erence of
spin-orbit coupling parameters is smaller then ¯1(E =
0) ¡ ¯2(E = 0). When z0 increases the di¤erence also
increases and then becomes z-independent. That makes
the spliting e¤ect lager for lager z0.

In short conclusion we have studied theoretically the
impact of the spin-orbit interaction on the electron en-

ergy states in small semiconductor cylindrical quantum
dots. Our calculations are based on the simple e¤ec-
tive one electronic band Hamiltonian and spin depen-
dent boundary conditions. To solve the problem we
employ the balanced QR method and inverse iteration
algorithm. Our results show that the method and algo-
rithm give us opportunity to solve this tree-dimensional
problem. We found the spin-orbit interaction can sig-
ni…cantly modify the electron energy spectrum of InAs
semiconductor QDs build-in into GaAs matrix. The
splitting is strongly dependent on the dot size and can
gain an experimentally measurable value for relatively
small quantum dots.

Finally, we would like to point out that our model of
calculations can be used as the starting point in estima-
tions of the spin-orbit interaction e¤ects in semiconduc-
tor QDs. To make proper quantitative calculations one
should solve the Schrödinger equation with use of the
self-consistent potential within the multiband approach.
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