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ABSTRACT

    An analytical model for the electric characteristics of
ultrathin double-gate and surrounding-gate MOSFETs in
strong inversion and accumulation is presented. The
analytical solutions to the 1-D simplified Poisson’s
equation in both Cartesian and cylindrical coordinates
with symmetric boundary conditions are examined. The
concentration of the induced inversion charge by the
same surface potential is found significantly higher in
the surrounding-gate MOSFET, which indicates its
better gate control and achievable higher current.
Finally, the full 1-D Poisson’s equation is numerically
solved and compared with the analytical solution of the
simplified equation, and an excellent agreement between
them is found.

Keywords: Double-gate and surrounding-gate MOSFET,
ultrathin body, strong inversion, volume inversion.

1 INTRODUCTION

     As MOSFETs are scaled down to sub-50 nm, two
promising structures such as the symmetric double-gate
and surrounding-gate MOSFETs have attracted an
increased research interest. It has been demonstrated that
with the symmetric-gate design, the channel area is
raised to increase the saturation current and the Si body
control is enhanced to reduce the short-channel effects
[1-6]. Recently, the development of ultrathin double-
gate MOSFET introduces the concept of volume
inversion: the inversion charge spreads throughout the
whole ultrathin Si body, which improves the device
characteristics (e.g., higher current due to the substrate
mobility) [7-8]. Strong inversion plays an important role
in MOSFET device physics as it provides the
information of the swept charge as well as the saturation
current. The work of Hauser et al. [9] and Taur [10] has
led to an analytical solution to the simplified 1-D
Poisson’s equation in the Cartesian coordinate for a
double-gate MOSFET. However, interpretation of a
surrounding-gate MOSFET should be performed using
the Poisson’s equation in the cylindrical coordinate (with

a more complex form which brings more mathematical
difficulties). The simple integration technique [9-10] to
analyze a double-gate MOSFET in the Cartesian
coordinate fails to give an analytical solution to a
surrounding-gate MOSFET.
    In this paper, we shall apply a variable transformation
technique, which has been used in the theory of
combustion explosion and astrophysics [11], to solve the
simplified 1-D Poisson’s equation in the cylindrical
coordinate for a surrounding-gate MOSFET in strong
inversion and accumulation. Based on the analytical
solutions obtained, we compare the inversion charge
concentration of a double-gate MOSFET with that of a
surrounding-gate MOSFET. It is found that significantly
higher charge concentration is induced in the
surrounding-gate structure than in the double-gate
structure (when the same surface potential is applied),
which indicates a better gate control and potentially
higher current in the surrounding-gate MOSFET.
Finally, we perform numerical simulation using the full
1-D Poisson’s equation and results are found in excellent
agreement with above analysis.

               2  MODEL AND ANALYSIS

    A general model to describe NMOSFET is known as
the Poisson’s equation [12]:
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In 1-D situation, equation (1) becomes:
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For the double-gate structure in the Cartesian coordinate:
m=0, for the surrounding-gate structure in the cylindrical
coordinate: m=1. The schematic description of the
device structure is shown in Fig. 1. aN  is the doping
concentration of the Si body and other symbols are
following those widely used in the literature. The
symmetric boundary conditions for both structures are as
following:



                               0)0( ==r
dr
dϕ                               (3a)

                               srr ϕϕ == )( 0                              (3b)

Here 0=r  is at the center of the Si body and 0rr =  is

on the surface, sϕ  is the surface potential.

                                       (a)

                                       (b)

   Fig. 1. The structure of a double-gate MOSFET (a),
               and a surrounding-gate MOSFET (b).

When NMOSFET is in strong inversion, the holes and
depletion-charge terms in equation (2) are neglected and
equation (2) is simplified to:

               kTq

a

i

s

e
N

nq

dr

d

r

m

dr

d /
2

2

2
ϕ

ε
ϕϕ =+                (4)

When NMOSFET is in strong accumulation, the
electrons and depletion-charge terms in equation (2) will
be neglected. The resultant Poisson’s equation can be
transformed to a form close to (4) by defining 'ϕϕ =− .
Thus similar analysis can be extended from strong-
inversion to strong-accumulation regime and we shall
only focus on strong inversion in this paper.
    Since the analytical solution to equation (4) with m =
0 subject to boundary conditions (3a,b) has been given
by Taur [10], we shall quickly go through the
mathematical procedure (in a different way) for a
background knowledge. A new variable z is defined:

kTqz /ϕ=  with which equation (4) is rewritten as:
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Equation (5) with m = 0 is equivalent to:
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Integration of (6) yields:
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The constant a in (7) will be determined from the

boundary conditions. Set zeu = , then we have the
relation: ududz /=  which can be substituted into (7) to
get the following equation:
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It will be shown later that in the real domain, a can only
be negative. Thus for a<0, equation (8) is integrated to
get the following form:
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Boundary condition (3a) along with equations (7) and

(9) leads to: 0)](cos1[|| 2 =− − ba . Since 0≠a , thus

0=b  is the simplest value to satisfy above equation. a
is obtained from the boundary condition (3b) as below:
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From equation (9), we have the potential ϕ :
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The surface charge density is:
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When a>0, we find: )]2/(ln[ 2 barchaz +−= − δ
which, however, is not a real function.
    To study a surrounding-gate MOSFET in strong
inversion, equation (4) with 1=m  should be considered.
The integration technique we just demonstrate is not
useful. Two transformation variables are introduced as:
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Thus we have:
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Substituting (12) and (13) into the Poisson’s equation (5)
yields:
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Integration of above equation gives:
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The constant h=0 is required by ,0)0( ==rη
,0)0( ==rβ  and (15). Substituting (12) into equation

(15) with h=0 results in a new differential equation:
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(16) is used to remove the common term in the original
equation (5) with m=1 :
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Equation (17) has a well-known solution:
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The boundary condition (3a) is automatically satisfied
by (18). A relationship between A and B is found by
substitution of  (18) into (5):
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The boundary condition (3b) yields a formula for B:
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The surface charge density is:
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3  RESULTS AND DISCUSSIONS

    The potential and inversion charge concentration, both
as a function of the distance r from the silicon substrate
center, are calculated and shown in Fig. 2. Fig. 2(a) and
Fig. 2(b) are for the ultrathin double-gate  MOSFET
with a 30-nm-thick body, e.g., nmr 150 = ,
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Fig. 2(c) and Fig. 2(d) are for the surrounding-gate
structure with the same parameters. A significant
difference in the inversion charge concentration of these
two structures is evident in Fig. 2(e). It is expected that
the saturation current of a surrounding-gate MOSFET
will be larger than that of a double-gate structure.
Usually, the gate voltage rather than the surface potential
is given. However, the surface potential can be solved in
the iteration method if the voltage drop in the gate oxide
is considered [10]. It should be kept in mind that there is
only one physically correct value in the double roots of
the equations (10) and (20) which are used to determine
the constants of integration. Numerical simulation using
the full Poisson’s equation (2) for both structures has
also been carried out and the results are shown in Fig. 3.
An excellent agreement between the analytical solution
of the simplified Poisson’s equation and the simulation
of the full Poisson’s equation is observed.
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Fig. 2. MOSFET electric characteristics according to the
analytical solution to the simplified Poisson’s equation.
(a) The potential of a double-gate MOSFET as a
function of r . (b) The inversion charge concentration
as a function of r . (c) The same as (a) except for a
surrounding-gate MOSFET. (d) The same as (b) except
for a surrounding-gate MOSFET. (e) Ratio of the
inversion charge concentration of a surrounding-gate
MOSFET to that of a double-gate MOSFET.
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Fig. 3. MOSFET potential according to numerical
simulation of the full 1-D Poisson’s equation,

nmr 150 = , 31710 −= cmN a  and Vs 0.1=ϕ . (a) The
potential of a double-gate MOSFET as a function of
the r . (b) The potential of a surrounding-gate
MOSFET as a function of r .

4  CONCLUSIONS

     In this paper, we have extended the analytical model
of Taur to study the surrounding-gate MOSFET in
strong inversion and accumulation. A variable
transformation technique is applied to analytically solve
the simplified Poisson’s equation in the cylindrical
coordinate. A comparison between the inversion charge
concentration of a double-gate MOSFET and a
surrounding-gate MOSFET has been made and we found
that the surrounding-gate structure is more attractive in
the sense of more inversion charge induced. Numerical
simulation is finally performed to confirm the validity of
our simplification and the analytical solution.
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