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ABSTRACT

    A compact thermal model is presented, which describes the
hot spot (junction) temperatures and contact heat flows of
electronic packages or systems in the stationary state. The
model is exact provided that the underlying heat conduction
equation is linear (i.e. no temperature dependence of thermal
conductivities is assumed) and the thermal contact areas to
the environment have uniform temperature distribution. The
model leads to a systematic method to construct thermal re-
sistor networks. The number of model parameters for n con-
tact areas and m independent heat sources is ½ (n-1) (n +
4 m) + m2 . They are determined by successive linear fits to
simulated and measured temperatures and heat flows of the
system. The method is demonstrated by application to IC
packages and compared to a description with seven-resistor
networks. The accuracy is improved considerably, however at
the expense of an increase of the number of model parameters
to 26 for a package with 6 thermal contact areas.
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1   INTRODUCTION

    Extensive work has been done in the past in developing
compact thermal models of different electronic packages for
use in conduction cooled applications such as printed circuit
boards [1, 2, 3]. Also for multichip modules - e.g. in power
electronic applications - such models are needed in order to
predict maximum (hot spot or “ junction“)  temperatures of the
semiconductor devices in the system by simple means using
e.g. circuit simulators instead of finite element (FE) methods.
In addition also the heat flow through the sides or thermal
contacts to the environment has to be reproduced correctly. If
the number of model parameters is very much lower than the
number of parameters describing a “detailed model”  as, for
instance, a finite element model (fig.1), the model is called a
compact model.
     In the European projects DELPHI and SEED [4, 5] a
suitable set of boundary conditions for the generation of
compact thermal models has been defined as test condition.
Thermal resistor networks were generated intuitively for

different packages and  the resistances (model parameters)
fitted to give as close as possible the junction temperatures
and heat flows for the set of boundary conditions [1,2,3].  The
model parameters obtained by the fit stay constant for all
boundary conditions (boundary condition independent
model).
    The exact model to be presented in this work leads to a
systematic method to construct thermal resistor networks and
is derived from the properties of the general heat conduction
equation for the temperature field  T
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The mass density ρ , the specific heat  c, and the thermal
conductivity λ  depend only on the position x , but not on T
itself . H denotes the heat generation density. Since eq. (1) is
linear in T , solutions for different boundary conditions and
heat sources can be superposed (added) to give new solutions
for the added boundary conditions and heat sources [6, 7, 8].
In the following the case of stationary temperature distribu-
tion is considered, i.e. the left hand side of (1) is zero.
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        Figure 1:  ¼  Finite Element model for  IC-package

2    MODEL EQUATIONS

    The package may have generally  n  thermal contact areas
with temperatures T1 , T2 , ... , Tn . It is assumed that the tem-
perature along each contact area is uniform. This can be
achieved  by subdividing contact areas in smaller ones, if
necessary. It is also assumed that the junction temperature
Tjunc  of the device is defined at a fixed hot spot location
(usually the centre of the semiconductor chip within the pack-
age). The other surfaces not attributed to contact areas have



adiabatic (von Neumann) boundary conditions ∂T/∂n =0,
which means that there is no heat flow across these surfaces.
Then it follows from the linearity of (1) that  Tjunc depends
linearly on the boundary temperatures
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and the total power dissipated by the distributed heat sources,
P = ∫ H(x) d3x . If, for instance, we set all Ti =0 , it follows
immediately from (1) that Tjunc is proportional to P: Tjunc =
RthJ0 ⋅ P . On the other hand, if we set  P =0 (i.e H =0 in (1) )
and Ti ≠ 0 for one i and all other Tk =0 (k≠i), then Tjunc = ai ⋅
Ti. Now the solutions of (1) with P = 0 , Ti ≠ 0  and P ≠ 0 , Ti

= 0  can be superposed to give the hot spot temperature Tjunc
for general P, T1, .., Tn according to (2). RthJ0 and ai are
model parameters. Since the addition of a constant T0 to the
temperature field and boundary temperatures gives again a
solution of (1), we have in case of Ti = T0 = const.: Tjunc – T0

= RthJ0 ⋅ P . This is only compatible with (2), if the ai satisfy
the constraint
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  Generally the temperature field within a volume - and thus
also Tjunc - is determined completely by eq.(1) and the
knowledge of the boundary conditions Ti and ∂T/∂n =0 on the
volume surface. With these data, also the heat flows on the
surface are computable. However, this necessitates the
knowledge of the continuous material parameters ρ ,  c and
λ over the whole volume or - in lumped form - the knowledge
of the topology and values of the equivalent thermal resistor
network. In other words, “ the detailed model”  has to be
known in order to predict the heat flows. Many different de-
tailed models satisfy the same relation (2) but may have dif-
ferent heat flows at the contact areas. Therefore, to complete
the compact model a relation is needed that gives the heat
flows as a function of P, T1, .., Tn .
    In the case Ti = 0  for all i , the heat flow portion of P at the
thermal contact area k is given by  P ⋅ qk  with the additional
model parameters qk satisfying
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In case of  P = 0 , Ti ≠ 0 for one i and for all k≠i Tk = 0,  a
heat flow Ji,k  through the external contact k is caused by the
excitation Ti at contact i  according to   Ji,k = Ti / Ri,k  with
symmetrical resistor matrix  Ri,k . Again, the solutions of (1)
with P = 0 , Ti ≠ 0  and P ≠ 0 , Ti = 0  can be superposed to
give the total heat flow Jk  at contact k for general  P , Ti  :

∑ =+⋅= n
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Because of heat flow (energy) conservation
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Eq. (2) and (5) constitute the compact thermal model with the
model parameters RthJ0 , ai , qk  and  Ri,k . These (n+1) 2

parameters are reduced by the constraints (3), (4), (6) and by
the symmetry of Ri,k to ½ (n-1) (n + 4) + 1 independent pa-
rameters. The model is exact under the stated suppositions of
isothermal contact areas and linearity of (1).

3    APPLICATION  EXAMPLE

    The standard boundary conditions defined in ref.[1, 2] are
applied by specifying the thermal contact resistors in distrib-
uted form (inverse heat transfer coefficients) between the
contact areas of an IC package and zero ambient temperature.
Extensive and elaborate thermal measurements (fig.2) for a
variety of IC packages have been performed [1] in order to
check the accuracy of detailed model FE calculations [9] for a
subset of the boundary conditions. The verified FE calcula-
tions, in turn, were used to adjust a seven resistor network to
the full set of 38 boundary conditions with the help of non-
linear optimisation. The accuracy of Tjunc and the contact
heat flows are displayes in fig.3 for an IC-package of type P-
TQFP-144-2 with six thermal contact areas, which are re-
ferred to in fig.3 as top inner, top outer, bottom inner, bottom
outer, sides and leads. Fig. 4 shows the result for the new
model (2), (5). Obviously the accuracy has improved consid-
erably. The remaining discrepancies are attributed to non-
isothermal contact areas and inaccuracies of the data basis.
    A very fast procedure to determine the  26 parameters of
the new model consists in performing successive linear fits,
thus circumventing the problems of non-linear or genetic
algorithms with numerous local minima. At first eq.(2) is
adjusted to the measured and simulated Tjunc values by a
standard linear fit routine to obtain the values of RthJ0 and ai

. Then the n = 6 equations (5) are fitted one after the other for
each contact k to the heat currents Jk and heat flow portions qk

of the data basis in order to obtain the inverse resistor matrix
1/Ri,k . The resistor matrix obtained in this way satisfies the
constraint (6), but is not completely symmetric. In order to
enforce the symmetry constraint in the fitting-process, the full
equation system (5) should be adjusted simultaneously in-
stead successively to prevent an unbalanced distribution of
the heat flow error bars  among the contacts.
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       Figure 2: Thermal measurement set-up for special
       boundary conditions (example from ref.[1])



Figure 3: Junction temperature and heat flow errors at 6 thermal contacts for seven resistor network (centre diagram) compared
to FEM and measurement. Test for IC package P-TQFP-144-2 for standard set of 38 boundary conditions [1].

Figure 4: Junction temperature and heat flow errors for new compact model ( eq. (2), (5)) for the same IC-package and FEM
and measurement data used in fig.3.

4   THERMAL RESISTOR NETWORKS

    It is possible to represent the exact model (2), (5) by a
thermal resistor network. Fig.5 shows the network for n = 3
thermal contacts. The construction principle is simple: Con-
nect the contact areas with each other by a direct thermal
resistor connection. Then introduce one junction node and

one additional node, which is connected to the heat current
source P, and connect all nodes (contacts, junction, heat
source) with direct resistor links. The network obtained in this
way has ½ (n-1) (n + 4) + 3 thermal resistors, i.e. two pa-
rameters more than the compact model of section 2. This does
not mean that two of the resistors, e.g. the one between junc-
tion and heat source node, can be omitted, since without that

-15 %

-10 %

-5 %

0 %

5 %

10 %

15 %

1 2 3 4 5 6 7 8 9 10 11 1 2 1 3 14 1 5 1 6 17 18 1 9 20 21 2 2 2 3 24 2 5 26 27 28 29 30 31 3 2 33 34 3 5 36 37 38

N u m be r o f B o un d ary C o n d itio n

to p  inne r top  ou te r bo ttom  inn e r bo ttom  o u te r s ides leads

-5%

-4%

-3%

-2%

-1%

0%

1%

2%

3%

4%

5%

1 2 3 4 5 6 7 8 9 10 11 1 2 13 14 1 5 16 17 1 8 19 20 21 22 23 24 2 5 26 27 2 8 29 30 3 1 32 33 34 35 36 37 3 8

F lux E rro r R e la tive  to  To ta l F lux

R e l. E rro r o f Ju nc tion  Tem pera tu re  
T junc

top  inn er
T I

 B I
bo ttom  inn er

le ad s

L

B O
bo tto m  o u te r

to p  o u te r
T O

ju nc tio n
J   

S
s ide s

-1 5 %

-1 0 %

-5 %

0 %

5 %

1 0 %

1 5 %

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 2 0 2 1 2 2 2 3 2 4 2 5 2 6 2 7 2 8 2 9 3 0 3 1 3 2 3 3 3 4 3 5 3 6 3 7 3 8

N u m b e r o f B o u n d a ry  C o n d it io n

to p  in n e r to p  o u te r b o tto m  in n e r b o tto m  o u te r s id e s le a d s

-5 %

-4 %

-3 %

-2 %

-1 %

0 %

1 %

2 %

3 %

4 %

5 %

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 2 0 2 1 2 2 2 3 2 4 2 5 2 6 2 7 2 8 2 9 3 0 3 1 3 2 3 3 3 4 3 5 3 6 3 7 3 8

F lu x  E rro r R e la tive  to  T o ta l F lu x

R e l. E rro r  o f J u n c tio n  T e m p e ra tu re  
T ju n c



P
Tjunc

T1 T3

resistor Tjunc would be zero for all P with Ti =0. The model
parameters can be represented by analytical expressions of
the resistors, which are too lengthy to be presented  here.
    A similar network has been suggested in ref.[3] (shunted
network with one additional floating node). It is important to
note that in our case the floating node describes the junction
temperature Tjunc and the additional node is used for con-
necting the heat current source P . This accounts for the fact,
that the heat generation density H generally is not a point
source at the hot spot location of  Tjunc.  Otherwise P would
have to be connected with the Tjunc node as in ref.[3] and
other previous work. It can be shown that in this case Tjunc
and Jk in eq (2), (5) can be described by a shunted network
and that the additional floating node is superfluous. The pa-
rameters of the compact model then satisfy the additional
equation  ai = qi .  This relation also holds for networks whose
junction node is connected directly to the heat source P and
which have one additional floating node. It is an unsettled
question whether this is true also for  two or more additional
floating nodes.

Figure 5:  Thermal resistor network for exact compact model
(n = 3 contact areas). Each straight line connecting nodes
represents one thermal model resistor. The Rex characterise
the heat transfer (boundary conditions) from the thermal
contact areas to the ambient.

5    SEVERAL HEAT SOURCES

      In many practical cases several independent heat sources
P1 , ... , Pm have to be considered as, for instance, in multichip
modules. Every chip l dissipates the heat Pl  and has a junc-
tion (hot spot) temperature Tjuncl . Again, making use of the
superposition principle of the heat conduction equation (1)
the straightforward generalisation of the model equations of
section 2 leads to:
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where the matrix RthJ0j l  describes the thermal interaction of
the different chips [7, 8]. For the same reason as for eq.(3),
the aj i always satisfy the relation
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for all  j = 1, ..., m . In analogy to (4) the heat flow contrib-
uted by Pl  at the thermal contact area k of the system is given
by  Pl ⋅ ql k  with the model parameters ql k  satisfying
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With this eq.(5) for the heat flows at the contacts k =1, .. , n
can be written as
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with the symmetric resistor matrix Ri, k fulfilling the constraint
(6). Eq. (7) and (10) constitute the compact thermal model for
m independent heat sources and n thermal contact areas with
the model parameters RthJ0j l , al i , ql i , and Ri,k . By the con-
straints (8), (9), (6) and the symmetry of Ri,k the number of
independent model parameters is ½ (n-1) (n + 4 m) + m2 .
    A thermal resistor network representing these model equa-
tions can be constructed as follows: In the same way as in
section 4 connect the n contact areas with each other by ther-
mal resistors. Then introduce m junction nodes for Tjuncj and
m additional nodes to be connected to the heat sources Pl . All
nodes are connected with each other by resistors with the
exception of the nodes Pl and Tjuncj for j ≠ l . This gives
altogether ½ (n-1) (n + 4 m) + m2 + 2m  thermal resistors, 2m
more than independent model parameters. The circuit con-
structed this way can be used alternatively to the model equa-
tions.
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