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ABSTRACT

Simulation of the semiconductor transport under heav-
ily doped and stressed conditions is presented. The
degenerate statistics are introduced by taking into ac-
count the density-of-state functions for the band tail
and the impurity band. The momentum-dependent di-
electric function is used for the dispersive screening and
the carrier-carrier interaction which are appeared in the
impurity scattering of the heavily doped silicon. The ef-
fects of mechanical stress on the conductivity are imple-
mented by the relation between the stress and the Fermi
energy, in which contributions of the carrier transfer and
the mobility change for each of the splitted bands are in-
cluded. As an application of this modeling, simulations
for piezoresistive sensors are presented.
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sistance

1 INTRODUCTION

Effects of heavily doping and build-in stress become
important in high density devices. The reason of the
former is that the scaling rules allow the doping con-
centration to increase by the scaling factor, and that
of the latter is the interface problems in layers or ma-
terials. In order to design and analyze these devices,
the heavily doping effect and the stress-induced effect
should be implemented in the MEMS simulation. It is
expected for such simulation to determine the parame-
ters for doping control in the manufacture of the micro
pressure sensors so that the temperature noise of their
piezoresistance (PR) gage can be reduced.

In the present paper, we propose a model for imple-
mentation of the heavily doped effects and the mechan-
ical effects in the electrical transport equations.

2 THEORY

Most of the semiconductors have the many-valley
conduction band and the degenerate valence band. Their
conductivity is expressed by the summation of carrier
concentration and mobility over all valleys or bands, de-
pending on the carrier type; o =€), n(i)u(i). Not only

the quantities in this equation but also all physical quan-
tities of semiconductors can be calacterized by the impu-
rity concentrations and the temperature A(Np, Na,T),
or indirectly by a Fermi energy A(F). In other words,
the semiconductor is considered as a system defined by
these internal parameters. If we apply an external pa-
rameter such as the field or the stress etc. on this sys-
tem, some of its physical quantities will be affected by
it through the Fermi energy, which should be detected
as a signal in the application to the sensors. Therefore
it is necessary in the modeling of micro semiconductor
sensors to figure out the relation between the external
parameter and the Fermi energy.

Fractional change of the conductivity () caused by
the stress is called PR coefliceint and generally expressed
as
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where P is the stress, n(i) is the relative reduced Fermi
energy measured from i-band edge, p = >, u(i), and
n® and p( are the carrier concentration and mobility
of t-band, respectively. For n-type material all valleys in
conduction band are equivallent. Then Eq.1 becomes,
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where index h indicates the heavy hole, ( is defined by
the mobility ratio of light hole to heavy hole. The stress-
induced shifts of the relative reduced Fermi energy are
expressed as,
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1,7,k =1,2,3, ¢;’s are the components of strain tensor
in the conventional contraction, =, is the uniaxial de-



formation potential of conduction band, b and d are the
deformation potentials of valence band [1], [2].

The summation in Eq.2 and corresponding factor in
Eq.3 at room temperature are defined as the PR coef-
ficients for lower limit in the impurity concentration,
which depend only on the crystallographic direction.
Their factor %g_g?)_go is called PR factor and gives the
dependency of impurity concentration and temperature
[3]. If we use Fermi-Dirac approximation, the conductiv-
ity becomes proportional to F,11,2(n), where F; is the
Fermi integral of order j, s is the exponent appeared in
the relaxation time 7 = 79 F°. Then the PR factor is
expressed as,
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which is derived by adopting the relation of the Fermi
integral; %7577) = F;_1(n). However, discrepancy be-
tween the calculation by this approximation and the ex-
perimental results of Yamada et al. are very large in
heavily doped region [4]. Here we present a transport
model in MEMS and its feasibility is demonstrated by
solving this problem.

3 METHODS

3.1 Fermi Energy

Fermi energy is solved from the equation of charge
neutrality condition by the Newton iteration scheme.
For high impurity concentrations, density-of-state (DOS)
function for the conduction (or valence) band and the
impurity band DOS are taken into account. Once the
Fermi energy is obtained, the carrier and ionized im-
purity concentrations can be determined from a given
temperature. The screening length which is defined by
the ionized impurity concentrations and appreared as
the standard deviation in the band tail of DOS function
and the impurity band DOS, is solved consistently. The
numerical method is given in our previous paper [5].

3.2 Mobility model

Li et al. [6] have shown the numerical calculation of
the carrier mobility in silicon by combining lattice, ion-
ized impurity and neutral scattering. We have proposed
a development for their method by using the results of
subsection 3.1, in which the total relaxation time was
obtained by adding the reciprocal relaxation time for
each process according to the Mathiesson’s rule, and
by averaging it over the distribution of carrier energy.
Here we make a further improvement for the Brooks-
Herring (B-H) formula, which includes the momentum-
dependent dielectric function (Lindhard dielectric func-
tion) and second Born approximation to simulate the

dispersive screening and carrier-carrier interaction ap-
peared in the impurity scattering of heavily doped sili-
con [7], [8]. The improved formula is expressed by,
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where M (£, ) is the screening function,
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N7 is the ionized impurity concentration, 32 is the Thomas-
Fermi screening length and R is the average distance
between neighboring impurities: R = (2rN7)'/3. Over-
all scheme for the MEMS simulation in heavily doped
silicon is shown in Figure 1 which includes the modefied
carrier tranport calculation in the device simulation.

More easy way to implement the carrier mobility is
the use of its formula with empirical paremeters. Major
empirical modelings for carrier mobility are explained in
the literature of Selberherr [9]. However, they cannot re-
produce the experimental data in wide range extending
to the heavily doped region. To improve this problem,
Masetti et al. [10] gave formulae at 300 “K. Because we
need the mobility formulae as a simultaneous function
of impurity concentration and temperature, the formu-
lae given by Arora et al. [11] are adopted to compare
with our model.

3.3 Effects of mechanical stress

Effects of stress on the conductivity comprise two
parts. The first part is the effects on the carrier con-
centrations. The mechanical stress splits the valleys of
conduction band and the degenerate bands of valence
band. As a result, part of the carriers in higher valleys
(or bands) transfer to lower valleys (or bands). Thus
the intrinsic distribution of electrons among these val-
leys is broken. Because the equi-energy surface of the
valleys in conduction band has an ellipsoidal aspect and
that of the splitted bands in valence band has either of
two effective masses which depend on the stress and the
direction of conductivity, this re-distribution of carriers
causes an anisotropy in the conductivity.

The second part is the effects on the carrier mobility
which include the carrier scattering and the conductivity
effective mass. Because the strength of the carrier scat-
tering is proportional to the final states density of the
scattered carrier, only ftype intervalley (or interband)
scatterring makes direct contribution to this effects. It
can be proved from this fact that the stress-induced shift
of the relaxation time in a valley (or band) is propor-
tional to the shift of the carrier concentration, that is,
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Figure 1: Flow-chart of the modefied carrier transport
calculation in the device simulation.

the transfered part of the carriers in the valley (or band)
[12].

Then we can define the stress-induced effects on the
conductivity as a function of the internal parameters or
a Fermi energy. The reduced Fermi energy derivatives of
the physical quantities in Eqgs.2 and 3 can be generally
expressed as,
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4 RESULTS AND DISCUSSION

Result of the calculations for the electron mobilty
at 300°K which use the Lindard dielectric function in
the formula for the impurity scattering of the relaxation
time is shown in Figure 2, comparing with the calcula-
tions by the B-H formula and the formula of Arora et al.
As shown in this figure, the discrepancy of the result of
Lindard model and those of other models becomes larger
as the donor concentration increases. Similar figure for
the hole mobility is shown in Figure 3. The behaviors
of the mobility by using the Lindard model are similar
for both type carriers. However the present calculation
for the hole mobility at high acceptor concentrations is
lower than the experimental data by Masetti et al. [10].
The reason for this discrepancy may be ascribed to the
difference of the atomic form factor of the acceptors used
in our calculation for the Lindard function.
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Figure 2: Electron mobility at 300 K.
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Figure 3: Hole mobility at 300 °K.

We shall use these mobility models to confirm their

feasibility of the implementation in a temperature-dependent

MEMS simulation. For this purpose, the temperature
coefficient of the PR effect (TCPR) is considered as an
application of our model. The TCPR is calculated from
the PR factor by applying the calculation result of the
mobility to eq.6 numerically.

The calculation results of TCPR for n-type and p-
type silicons are shown in Figures 4 and 5, respectively.
The most familiar expression for the conductivity of
semicondoctors is the Fermi-Dirac approximation. The
PR factor is initially introduced in Ref.[3] by using the
Fermi-Dirac approximation. The curves indicated as
”Fermi-Dirac approx.” in these figures are reproduced
from Eq.4. The present work revises our previous simu-
lation model mainly in two points. One is that the Lin-
dard function is used for the impurity scattering. The
other is that the total differentiation as described in Eq.6



is considered in the differentials of carrier concentration
and mobility. The curves indicated as ”Lindard model”
in these figures are the calculations by taking into ac-
count these two points. The curves indicated as ”B-H
model” and ”Previous work” in these figures are the cal-
culations by use of the B-H formula, but the latter is not
considered the total differentiation. The caclulation by
applying the mobility formula of Arora et al. to Eq.6 is
denoted as ” Arora model”.
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Figure 4: Temperature coeflicient of the piezoresistance
coeflicient for n-type silicon at 300 °K. For the Fermi-
Dirac approximation, phonon scattering (s = —1/2) is
adopted.

As shown in Figure 4, the TCPR of n-type silicon
has a peak at about 3 x 10'7 cm ™2 and becomes positive
in the donor concentration range between 5 x 10'® and
3 x 10" cm 2. As the impurity concentration decreases
the TCPR of both type materials becomes about 3300
ppm which is inversely proportional to the room tem-
perature. The heavily doped effect on the carrier scat-
tering, which is included in the Lindard model, makes
the peak broaden to the higher impurity concentrations
side.

Similar tendencies are found for p-type silicon. As
shown in Figure 5, the peak of TCPR for p-type silicon is
located at about 1x10'® ¢cm™3 which is higher than that
of n-type in the impurity concentration. The present
models can reporduce the experimental data of Yamada
et al. fairly well. The peak of TCPR calculated by
taking into account the total differentiation shifts to the
higher concentration side.

The reason why the behavior of TCPR in the Fermi-
Dirac approximation is rather different from that of other
models at higher impurity concentrations should be at-
tributed to the fact that this approximation assumes the
scattering just in isotropic parabolic energy bands.

In coclusion, we would like to comment that our ap-
proach for the mobility is valid for low field and does
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Figure 5: Temperature coeflicient of the piezoresistance
coeflicient for p-type silicon at 300 °K. For the Fermi-
Dirac approximation, phonon scattering (s = —1/2) is
adopted. The experimental data of Yamada et al. are
shown as a comparison [4].

not consume so much computational resources as Monte
Carlo simulation. However, more accurate formula for
the mobility is needed for the practical algorism in the
transport simulation of MEMS.
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