
The Coupled-Domain System Simulation/Simulatability Problem

J. Joplingy, D. Rosez, R. Fairy

yDepartment of Electrical and Computer Engineering
zDepartment of Computer Science

Duke University, P.O.Box 90291, Durham, NC, 27708-0291, jj@ee.duke.edu

ABSTRACT

This paper discusses the di�culties in current ap-
proaches to modeling and simulation of coupled-domain
systems and presents new approaches and solutions to
simulation execution and the model-simulation gap.

The ongoing paradigm shift toward coupled-domain
systems and total system simulation has spawned a wealth
of activity in modeling e�orts and languages with which
to represent models, generally leaving simulation imple-
mentations taken for granted. New approaches to sim-
ulation of coupled-domain systems have been proposed,
implemented and studied, independant of a standard
modeling language. The notion of a `model compiler'
is introduced to help bridge the growing gap between
modeling and simulation.

Keywords: System simulation, coupled-domain simu-
lation

1 INTRODUCTION

The recent paradigm shift toward coupled domain
systems has spurred an interest in incorporation of sub-
systems from di�erent energy domains into a complete
system model and ultimately a complete system sim-
ulation. To this end, popular modeling languages have
added extensions to support such schemes(VHDL!VHDL-
AMS, Verilog!Verilog-A, etc.) while providing the mod-
eler the convenience and comfort of a language with
which he/she is already familiar. This is the layer of
abstraction that is necessary to facilitate e�ective mod-
eling of such systems amidst their complex relationships
(Figure 1).

However, the complement to the capability of repre-
senting the system in a language is that of simulating
that representation. Unfortunately, a majority of recent
e�orts have been in how to represent the model, with
the implementation of the simulation taken for granted.
The immense success of SPICE (and its variants) as
a circuit simulator lends to the natural approach to
solve the composite system modeling/simulation prob-
lem by merely extending the modeling language abstrac-
tion and relying on the `tried-and-true' methods of cir-
cuit simulation. This has resulted in a growing gap be-
tween the capabilities of the modeling language and the

capabilities of the suporting simulator.

To resolve this phenomenon, new approaches to sim-
ulation of coupled-domain systems have been proposed,
implemented and studied independantly of a standard
modeling language. The DAENS simulator is an at-
tempt at representing and solving the system as a set
of fully implicit di�erential-algebraic equations (DAEs).
The DAENS2 simulator took the knowledge gained from
the DAENS study and attempts to solve the system as
a set of potential-controlled
ux DAEs. The di�cuties
with those approaches revitalized an interest in a state-
based approach.

As a consequence of the simulation approach and im-
plementation being devised completely independant of a
modeling language, the gap between modeling and sim-
ulation is at �rst left even more glaringly open. How-
ever, this is resolved simply by the idea of a `model
compiler'. This is an entity that would span the void be-
tween a model represented in a convenient language and
the much more cumbersome representation of informa-
tion needed by the supporting simulator. Knowing the
rules and structures of each, the model compiler would
interpret the conveniently coded model and translate it
into the structures and models (if necessary) required
by the simulator (Figure 5).

Electrical

Mechanical

Fluidic

Optical

Thermal

Chemical

DROPLETS!

Actuators

Sensors

Actuators

Sensors

Dissipation

Rate Constant

ActuatorsSensors

Rate Constant

Dissipation

Dissipation

Dissipation

Dissipation

MOEMS

Switch
Fluid Optical

BIOCHIPS

Figure 1: Snapshot of coupled domain relationships.

2 APPROACH

To be able to represent coupled-domain systems, it
is desireable that the modeling language inherently sup-
port multiple domain behavior. In addition, having
stepped out of the purely electrical domain, it is nec-
essary that the modeling language support both tem-
poral derivatives and spatial derivatives/discretizations.
VHDL-AMS, MAST, and Verilog-A, for example, sup-
port the representation of arbitrary domains; however,
implementations are still realized atop legacy simulation
approaches. VHDL-AMS also speci�cally supports dis-
cretizations, although simulators to date have not cap-
italized on this aspect. The power of SPICE may still
be leveraged by generating equivalent circuits; however,
the multiple domains must be abstracted out, and the
resulting representation is often counter-intuitive and
unnecessarily complex.

To be able to e�ectively simulate coupled domain
systems, it is desireable to have algorithms that are sta-
ble, fast, and also speci�cally address coupled-domain
issues, such as sti�ness. Using C/C++ is advantageous
in that it is a general purpose language; however, that
generality comes with the added cost of having to code
everything manually. SPICE, as mentioned, is a widely
used simulation tool; however, its core algorithm has
changed little since its creation in the early 1970's and
may su�er from instabilities and nonconvergence [6].
VHDL-AMS simulators, as mentioned, don't yet sup-
port all aspects of the modeling language; furthermore,
many implementations rely on unstable algorithms.

Given these facts, it is time to reasses what would
now be the best engineering approach/tradeo�s to as-
sembling a coupled-domain system simulator, much as
SPICE was the engineering solution to the circuit sim-
ulation problem a few decades ago. Since then, tech-
nology has matured. Computing power is many times
greater, advances in numerical analysis have introduced
new algorithms with desirable properties, and network
analysis and graph theory have matured and provide
additional insight and algorithms.

A new supporting environment for coupled-domain
system simulation is needed. Matlab was chosen as the
cornerstone upon which to build this support. Mat-
lab provides a foundation of robust and optimized nu-
merical algorithms, a scripting language with inherent
support for disctretizations, support for abstract data
types, built-in graphical interface capability, and the

exibility of allowing arbitrary user-de�ned functions/models.
In the long term, it would also be possible to export the
system to a compiled executable, which would improve
speed and distributability.

3 DAENS

DAENS (Di�erential and Algebraic Equation Net-
work Solver) attempted to �rst address this problem as
a system of fully implicit nonlinear di�erential-algebraic
equations (DAEs):

F (~x; _~x; t) = 0 (1)

where ~x is a vector of all system variables, be they
voltages, currents, displacements, forces, etc. Based on
previous work [1,2], the Newton waveform relaxation
(NWR) algorithm was chosen to solve this system. Solv-
ing for the Newton direction of the above implicit sys-
tem, employing the operator Fr�echet derivative, gives:

J1
@

@t
�~x+ J2�~x = �F (2)

where J1 = @F=@ _~x and J2 = @F=@~x. This is now a
linearized DAE to solve for the Newton direction �~x. To
accomodate this form, model descriptions were de�ned
that provided their corresponding branch constitutive
relationships (BCRs), in the implicit form f(~y; _~y; t), and

the Jacobian information @f=@~y and @f=@ _~y.
Figure 2 shows a �ctitious system with coupled elec-

trical, mechanical and
uidic components. Figure 3
shows the results of simulating this system using DAENS.

R L
spring

k
yV

F

P
pipe

valve

Figure 2: Sample electro-mechanical-
uidic system.

0 0.05 0.1 0.15 0.2
−5

0

5

10

15

V
ol

ta
ge

0 0.05 0.1 0.15 0.2
0

0.05

0.1

F
or

ce

0 0.05 0.1 0.15 0.2
−0.5

0

0.5

1

1.5

P
re

ss
ur

e

Time

0 0.05 0.1 0.15 0.2
−0.01

−0.005

0

0.005

0.01

C
ur

re
nt

0 0.05 0.1 0.15 0.2
−5

0

5
x 10

−5

D
is

pl
ac

em
en

t

0 0.05 0.1 0.15 0.2
−5

0

5
x 10

−7

F
lo

w
 R

at
e

Time

Electro−Mechano−Fluidic System Simulation

Figure 3: DAENS test case simulation results.

The coupling between the systems is apparent from
the plots. The electrical system is activated �rst, ex-
hibiting the typical RLC response. The electrostatic

attraction between the plates of the capacitor causes
a displacement with no external force applied. When
a force is applied, the displacement is a�ected accord-
ingly. In addition, the controlled pressure source and
valve behave accordingly.

DAENS, though, still su�ers from the complexities
of solving a fully implicit set of DAEs. The coe�cient
matrix J1 is easily singular, a characteristic of DAEs.
In addition, it is not guaranteed that this formulation
yields an \index-1" DAE, a subclass of DAEs that ex-
hibit properties that facilitate numerical solution [3,7].
DAENS relies on Matlab's capability of detecting the
DAE and its index. As such, DAENS walks a �ne line
between successful simulation of a well-posed model and
failed simulation of a less than ideal model. A better ap-
proach was needed.

4 DAENS2

DAENS2 learned from the challenges of assembling
DAENS in hopes of overcoming the obstacles that plagued
the �rst version. Predominantly, DAENS2 addressed
the issue of the form of the J1 mass matrix and at-
tempted to reapproach the solution to allow a more ro-
bust simulation capability against the quality of model
formulation by restructuring the rules to facilitate the
resulting DAE being of index-1.

The highly singular nature of the DAENS J1 matrix
is predominantly a result of posing the original problem
as a fully implicit set of DAEs. DAENS2, instead, added
the constraint that the models be posed as potential-
controlled
ux equations:

� = f(; _ ; t) (3)

and assembled the overall system explicitly from
ux
conservation (equivalently, KCL in the electrical domain),
essentially eliminating one set of variables. This ap-
proach isn't wholly unreasonable, either, since most ac-
tual devices are potential controlled. And, should the
need arise, traditional techniques may be employed to
�t
ux controlled devices into the framework. The re-
sultant Newton equation becomes:

J1
@

@t
�
_~ + J2�~ = �F (~ ;

_~ ; t) (4)

In addition to having nice properties on the J1 ma-
trix, the elimination of a subset of variables and BCRs
reduces the dimension of the resultant system to be
solved.

Unfortunately, so far DAENS2 has not o�ered con-
siderable improvement over DAENS. This may partly
be due to having used the original DAENS framework
to build the new DAENS2. As a result, some of the
improvements may not fully have been capitalized. Its

failure, however, prompted a renewed look at a state-
based approach, which could potentially eliminate the
di�culty of working with DAEs completely.

5 SSSS

The State-Space System Simulator (SSSS) is moti-
vated by the notion that the entire behavior of a system
can be captured by the dynamics of its `states' (dif-
ferential variables) and an algebraic output/observation
function. What is needed is a way to transform be-
tween the traditional nodal analysis representation and
an equivalent state representation. This is not a novel
idea, and in the early days of electrical circuit simulation
was discussed alongside what was known as a `hybrid'
solution approach, because the resultant equations were
not exclusively in terms of voltage or currents, but in-
stead involved both. A state space system is represented
as follows:

E _~x = A~x+B~u (5)

~y = C~x+D~u (6)

where ~x is the vector of states, ~u is the vector of
independant input sources, and ~y is the vector of desired
outputs/observations.

It is possible to perform this transformation on a
connected network (graph) by appropriately partition-
ing the incidence matrix, Ai, for the network and per-
forming a series of elimination operations to arrive at
equations for the di�erential variables entirely in terms
of input sources and the states, themselves. The coe�-
cients A and B contain information from the linearized
behavior of other elements in the network. The parti-
tioning of Ai is performed �rst by classifying types of
edges and arranging them in a prescribed priority or-
der. Then, a spanning tree of the network graph, when
constrained to the previous prioritization, is extracted.
One immediate side-e�ect is that additional information
must be stored in the model (or extracted by some other
means) as to the classi�cation of each edge.

This procedure is known for a linear, scalar system,
from previous work in circuit simulation [4,5]. However,
extension of this approach to a nonlinear, vectored sys-
tem is not immediately apparent. The SSSS simulator
builds upon this procedure, extending it to meet the
demands of a coupled-domain system simulator. A sim-
ple example electrical circuit and the resultant network
graph and tree are shown in Figure 4. The solid lines
represent the spanning tree, the dotted lines indicate
edges in the network not in the tree (links), and the
bottom node is ground.

One of the great advantages to the state-based ap-
proach is that for a linear system, Matlab already pro-
vides state-space simulation tools. Once the transfor-
mation has been made, Matlab can easily solve for all

the voltages and currents using its built-in state space
toolbox.

+

-

R

R

L
V

R

C
V C

R

R R

L

Figure 4: Simple circuit and corresponding graph and
tree.

Unfortunately, SSSS must be extended to nonlinear,
time-varying state-space systems, which Matlab does
not explicitly support. As such, SSSS exploits an ad-
ditional advantage of this transformation - that it re-
sults in a regular ODE for the state equation. Working
directly with the state ODE and observation equation,
SSSS is able to setup an inner and outer iteration, where
it solves the linearized system in the inner loop and up-
dates the time-varying matrices of the nonlinear system
in the outer loop. In this manner, the original linear ap-
proach is extended to the nonlinear case. The extension
to the vectored case is still being studied.

Furthermore, this transformation should greatly im-
prove simulation time, since a rather large DAE system
can be reduced to an ODE dependant on only its inter-
nal states, potentially a signi�cant reduction. In addi-
tion, the output function ultimately would only involve
the particular variables of interest, but (being an alge-
braic output function) this is not as computationally
intensive and will not be the primary source of speed
improvements.

6 MODEL COMPILER

Each of the simulation approaches above was de-
signed and implemented from the ground up with only
the simulation of coupled-domain systems in mind. As
such, they do not align themselves conveniently with any
existing modeling language, nor with an intuitive form
for representing models. As such, it may seem this has
only exacerbated the problem of a growing modeling-
simulation gap.

However, this gap may be bridged by the concept
of a \model compiler". The concept is illustrated in
Figure 5. In this framework, the user is allowed to work
with a language which they �nd comfortable, and use
the compiler to interface to one of the new simulation
approaches. There are a number of new issues involved
with implementing such a compiler, and related work is
underway to accomplish that.

7 SUMMARY

This paper has presented a description of the prob-
lems today with coupled-domain system simulation, and

VHDL-AMS
SPICE

equivalents Verilog-A Hierarchical Others

Netlist New Models

Standard
Model
Library

Standard
Model
Library

DAENS DAENS2 SSSS Others

Model-Translator/Compiler/Interpreter

Intelligent

M
O

D
E

L
IN

G
SI

M
U

L
A

T
IO

N

Figure 5: Relationship between modeling and simula-
tion, illustrating the role of the model compiler.

some of the work in an ongoing e�ort to address this
problem. The new simulation approaches have been
conceived and explored, and the notion of a model com-
piler is introduced to intergrate such new approaches
into a full system and the already existing design cycle.

8 ACKNOWLEDGEMENT

The research e�ort is sponsored by the Defense Ad-
vanced Research Projects Agancy (DARPA).

9 REFERENCES

[1] D. Erdman. \The Newton Waveform Relaxation
Approach to the Solution of Di�erential Algebraic Sys-
tems for Circuit Simulation". PhD. Thesis, Duke Uni-
verisity, 1989.

[2] D. Erdman and D. Rose. \Newton Waveform
Relaxation Techniques for Tightly Coupled Systems".
IEEE Transactions on Computer-Aided Design. Vol 11,
No 5. May 1992 pp598-606

[3] K. Brenan, S. Campbell, and L. Petzold. \Numer-
ical Solution of Initial-Value Problems in Di�erential-
Algebraic Equations". North-Holland. New York. 1989.

[4] R. Jensen and B. Watkins. \Network Analysis:
Theory and Computer Methods". Prentice-Hall, Inc.
New Jersey. 1974.

[5] L. Pillage, R. Rohrer, and C. Visweswariah. \Elec-
tronic Circuit and System Simulation Methods". McGraw-
Hill, Inc. New York. 1995.

[6] R. Kielkowski. \Inside SPICE: Overcoming the
Obstacles of Circuit Simulation". McGraw-Hill, Inc.
New York. 1994.

[7] L. Shampine, M. Reichelt, and J. Kierzenka. \Solv-
ing Index-I DAEs in MATLAB and Simulink". SIAM
Review. Vol 41, No 3, 1999. pp538-552

