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ABSTRACT

We investigate the relationship between the pull-in
phenomenon for electrostatic actuators and the hystere-
sis effect found in zipper actuators. Like lumped mass
and spring and tension based membrane models, we
show that a beam model of a simple electrostatic actua-
tor device has a fold and a corresponding pull-in voltage.
When a dielectric layer is added to the model, however,
the fold disappears for certain values of the dielectric
constant and layer thickness. We use a variational for-
mulation of the model to compute the location of the
zipped states and show that the disappearance of the
fold corresponds to the disappearance of the hysteresis
effect in the zipper actuator. Hence the existence of the
fold, and of the corresponding unstable state, is crucial
for understanding the hysteresis observed in previous
studies of zipper actuators.

Keywords: Electrostatic, Actuator, MEMS, Hystere-
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1 INTRODUCTION

It is well known that electrostatically actuated MEMS
devices show a pull-in instability due to the impossi-
bility of balancing the nonlinearly growing electrostatic
force with elasticity. The lumped mass and spring model
studied in [1], [2], [11], [3] can be used, as a first approx-
imation, to explain the phenomenon. For each value
of the applied voltage less than the pull-in voltage this
model has three solutions: two physical states lying
above the ground plate, one stable and one unstable,
and an unphysical state lying below the ground plate.
In [8] it was shown that the existence of the unstable
state is not relegated to simple, zero dimensional mod-
els of this type, but rather may be a generic phenomena
applying to all electrostatic actuators.

In this paper we extend the analysis contained in [8]
in three ways: Firstly, we model the actuator with a
more realistic beam model which also has two solutions
before pull-in, one stable and the other not. Secondly,
we add a dielectric layer on top of the ground plate in
order to model the pulled in states, which we refer to
as “zipped” states after the zipper actuators discussed
in [9], [10]. Thirdly, we take a variational approach and
show that the non-zipped states are local extrema of

an appropriate energy functional which also satisfy the
beam equation.

The paper is organized as follows: In Section 2 we
derive the model and determine the governing equation
for a pure elasticity model with two types of boundary
conditions. In Section 3 we introduce a variational for-
mulation of all three models and describe how it can be
used to give a detailed mathematical analysis of the two
beam models. A summary of the analysis is presented.
We show that the zipped states are energy minimizing
states which don’t satisfy the beam equation but only
a variational inequality. We also show that for certain
geometries the fold disappears from the solution space
of the model and as a consequence the hysteresis effect
also disappears. Hence we conclude that the existence
of the unstable state is necessary for the hysteresis ef-
fect. In Section 4 we present some results which have
been numerically computed using the code AUTO. A
summary of the results is given in Section 6.

2 THE MODEL

We consider a thin beam suspended above a rigid
plate. The beam is assumed to be of rectangular shape,
of width W, length L, and of negligible thickness. The
beam and ground plate are assumed to be composed of
a conducting material with a layer of insulating material
of dielectric constant keg and thickness d on top of the
ground plate. The dimensions of the ground plate are
assumed to be much larger than that of the beam.

The ground plate is held at zero potential while a
potential V is applied to the beam. With no applied
potential the beam lies a distance [ above the top of the
insulating layer, hence the distance between the beam
and the ground plate in this case is [ + d. The model is
illustrated in Figure 1.

We will consider two cases: one in which the beam
is clamped on the two opposite edges of length W and
free on the two remaining edges, and another in which
the beam is clamped on only one such edge and free
on the remaining three edges. Since we will explicitly
neglect fringing effects in the solution of the electrostatic
problem below, we assume that W > L.

We denote the coordinate system (see Figure 1) by
(z',9',2"), the electrostatic potential by ¢' and the de-
flection of the beam by u’. We work in the dimensionless
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Figure 1: Model of electrostatically actuated device.
The beam haslength L and is separated from the ground
plate by a distance [ in the undeformed state.

variables
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and in addition it will be convenient to define
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Note that the origin of the unprimed coordinate system
is such that lower surface of the undeflected beam is
located at y = 0 and the left and right edges of beam at
x = £1/2. Hence, the upper surface of the dielectric is
located at y = —1 while the ground plate is located at
y=-1-d/L
The electrostatic potential ¢’ satisfies the Laplace
equation in both the dielectric and free space regions.
Neglecting the fringe fields on the edges of the beam
this is 52 -~
¢
2 —
€ 52 + By =0 (3)

with boundary conditions

Here € = I/L is the aspect ratio of the device. Letting e
go to zero in the above and using the appropriate jump
condition for the gradient of the potential at the surface
of the dielectric gives
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The displacement v’ is assumed to satisfy (see, e.g., [5],
g

[4], 6], [7])
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nere [/ 1S the erective Young's modulus O the beam,
I its second moment of inertia, and T a tensile force
applied to the beam. In this paper we will only consider
tension free models and hence set T' = 0 from here on.
For the right hand side of (6) we have
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Again neglecting the €2 term, this reduces to
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Hence the governing equation for the model is
p
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where the dimensionless parameter g is defined by 8 =
V2L /(87 EII3).

We may choose one or both of the edges located at
x = +1/2 to be clamped. We choose not to investigate
pinned beams. The clamped-clamped boundary condi-
tions we will use are

w(—=1/2) = u;(—1/2) =0, u(1/2) =u,(1/2) =0.
(10)
while in the clamped-free case we have

u(=1/2) = up(—1/2) =0, uze(1/2) = uzee(1/2) = 0.

(11)
Note that we must distinguish between the parameter
0 for each set of boundary conditions. In what follows
below we will also consider the “zipped” state boundary
conditions

u(—=1/2) = ux(—1/2) =0, wu(a) =-1, ugx(a)=0
(12)
where —1/2 < a < 1/2.

3 ANALYSIS

As we have seen in the previous section, steady beam
configurations correspond to solutions of a fourth order
boundary value problem for the displacement. As in
the membrane model studied in [8] this equation has a
non-trivial bifurcation diagram. In the case in which
k = 0 (which happens if either d = 0 or K — o) the
bifurcation diagram, shown in Figure 2, contains a single
fold so that there are two solutions for each value of 3
less than a critical value 8* =~ 93.

In the case k > 0 it is convenient to formulate the
problem using a variational principle. An energy func-

tional
1/2 ﬂ
E(u) = /_1/2 ((%w)z - m) dx (13)
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Figure 2: Bifurcation diagram for the beam problem
with no insulating layer.

can be associated to the any beam configuration. The
boundary value problem can be recovered from it as its
Euler-Lagrange equation. It is obtained by taking its
first variation in a space of configuration satisfying ap-
propriate boundary condition. In the clamped-clamped
case, solutions of the boundary value problem are crit-
ical points for E in the space of states satisfying all
boundary conditions. In more mathematical words, u
solves the boundary values problem if and only if u sat-
isfies u(j) = u,(j) =0, j = £1/2 and

1
lim g(E(u +tp) —E(u) =0 (14)
for each smooth ¢ also satisfying the same boundary
conditions. In the clamped-free case all states satisfying
only the left boundary condition are allowed to com-
pete and solutions of the boundary value problem cor-
respond to critical points u of the energy functional (in
the above sense) satisfying the left boundary condition
u(0) = u,(0) = 0. The functions ¢ are also only re-
quired to satisfy the left boundary condition. The other
boundary condition is a natural one and is automatically
satisfied by any critical point (if it is regular enough).
Now, taking this variational point of view doesn’t
give us any new information for non-insulated bottom
plates (k = 0). Things change if we consider the insu-
lated case. In fact the presence of the insulator can be
mathematically modeled by adding the unilateral side
condition that
u> -1 (15)

to the variational problem for the energy functional. A
critical point now only satisfies the boundary value prob-
lem if it happens to already lie completely above the in-
sulator. Other critical points do however exist which are

partly 1 contact witih the imsulator. In tnis case tney
cannot satisfy the boundary value problem. It therefore
becomes essential to understand the bifurcation diagram
for the energy functional itself. To do so we model the
unilateral side condition by a penalty term in the energy
functional

Ew-= [ // (<um>2 - - u)+) dz
(16)

where (u)* = u if u > 0 and vanishes otherwise. The
artificial parameter ¢ needs to be chosen small enough.
After the introduction of the penalty term the unilat-
eral condition need not be imposed any longer and the
corresponding Euler-Lagrange equation can be derived.
We obtain the modified boundary value problem

8 1

Uggze = —m + EH(_l —u) (17)

which has to be complemented with the appropriate
boundary conditions for the considered cases. The func-
tion H is only different from zero for positive arguments
where it has value 1. In our numerical computation we
shall approximate H by H = 0.5 + arctan(Ku)/x for a
large constant K.

4 RESULTS

To produce the bifurcation diagrams we need in or-
der to understand pull-in and hysteresis we used a very
convenient numerical toolbox for computing bifurcation
diagrams called AUTO. It relies on the well-known ar-
clength continuation method which is a very convenient
numerical scheme to go around folds in bifurcation dia-
grams (see, e.g., [8]). In Figure 3 we plot the bifurcation
diagram for the energy functional E. for different thick-
nesses and dielectric constants of the insulating layer in
the clamped-clamped case. If the parameter k is not too
large we see two folds whereas for larger values of k no
fold (hence no pull-in or hysteresis) is observed. In the
latter case the top plate comes in contact with the in-
sulator before pull-in can occur. When present, the sec-
ond fold happens for a parameter value 3, at which the
unstable solution, appeared after the first fold, comes
into contact with the insulator and thus producing the
first zipped state. The solutions on the branch follow-
ing the second fold are therefore all zipped states. In
figure 4 we show some of the solutions along the bifur-
cation diagram for ¥ = 0.2. The diagram also predicts
and estimates the hysteresis behavior. Zipped states
first appear when (3 becomes larger than g* and they
persist until the value g, is attained when turning the
voltage back down again.

5 CONCLUSION

We presented an analysis of the electrostatic “zip-

per” actuators discussed in [9], [10]. Using a simple
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Figure 3: Bifurcation diagrams for the energy func-
tional.

one dimensional model we showed that the hysteresis
effect depends critically on the existence of an unsta-
ble stationary state and the corresponding fold in the
bifurcation diagram of the underlying equation. In ad-
dition to obtaining useful existence and uniqueness (and
non-uniqueness) results for the model, we showed that
for certain combinations of geometry and dielectric con-
stants the fold disappears from the solution space of the
equation and as a consequence the hysteresis effect also
disappears.

In order to account for the zipper effect, we extended
the analysis contained in [8] in three ways: Firstly, we
modeled the actuator with a more realistic beam model
which, like the membrane model, has two solutions be-
fore pull-in, one stable and the other not. Secondly, we
added a dielectric layer on top of the ground plate in or-
der to model the pulled-in, or “zipped”, states. Thirdly,
we used a variational approach and showed that the
non-zipped states are local extrema of an appropriate
energy functional which also satisfy the beam equation.
The zipped states are energy minimizing states which
don’t satisfy the beam equation but only a variational
inequality.
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