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ABSTRACT

In this work we present the results of the simula-
tion of AlxGa1�xAs/GaAs gradual heterojunction bipo-
lar transistor using a parallel three{dimensional semi-
conductor device simulator. This simulator is based
on drift{di�usion transport model. In order to solve
the systems of linear equations we have tested di�erent
methods of domain decomposition, which present great
advantages as opposed to the classic methods, as regards
to speed and memory requirements. One considerable
advantage of the simulator is that it has been imple-
mented using C and Fortran together with the standard
MPI message passing library, so obtaining a portable
parallel code for the majority of current architectures.
We have shown measures of the parallel execution time
and di�erent electrical results.

Keywords: simulation, parallel, solvers, �nite element
and Gradual HBT.

1 INTRODUCTION

Computer{aided numerical simulation has become
an indispensable tool in design and optimisation of semi-
conductor devices. In this work we have development a
simulator based on drift{di�usion transport model us-
ing Fermi{Dirac statistics. We have applied this simula-
tor to AlxGa1�xAs/GaAs gradual heterojunction bipo-
lar transistor (HBT). Unlike conventional silicon bipo-
lar transistors, a wide energy bandgap emitter is used
in HBTs to minimize hole injection from the base and
maintain high levels of emitter injection e�ciency. The
doping concentrations in the base and emitter can thus
be optimised for low base resistance and capacitance and
the base can be made thinner to reduce transit time and
improve high frequency performance.

We have used the �nite element method (FEM) in
our simulator in order to discretize the Poisson equation,
and hole and electron continuity equations in stationary
state. The properties of the resulting linear systems
and their high range make it necessary to �nd adequate
solvers, as classic methods, such as incomplete factoriza-
tions, are highly ine�cient. We have used a library of
parallel sparse iterative solvers, called PSPARSLIB [1]

to solve these linear systems in parallel. A great ad-
vantage of this library is that it is optimised for several
powerful multicomputers. Using this library, we have
studied various domain decomposition methods in or-
der to solve these systems [2]. The possibility of being
able to execute the simulator in parallel allows a consid-
erable reduction in the time that is necessary in order
to obtain the solution of the simulation, which is a great
advantage over sequential simulators.

In the next section we present a description of the
three{dimensional parallel simulator, focusing on the
physical model and numerical solvers, which we have
studied to solve the associated linear systems. Then,
in the section 3, results of the simulation of a gradual
AlxGa1�xAs/GaAs HBT are shown. In the �nal section,
the main conclusions of this work are presented.

2 DESCRIPTION OF THE

THREE{DIMENSIONAL

PARALLEL SIMULATOR

Our simulator is based on drift{di�usion transport
model. Using this model Poisson, electron and hole
continuity equations have to be solved in the bulk semi-
conductor region. These equations can be written in a
stationary state as [3], [4]:

div("r ) = �q(p� n+N+
D �N�A ) (1)

div(Jn) = qR (2)

div(Jp) = �qR (3)

where  is the electrostatic potential, q is the electron
charge, " is the dielectric constant of the material, n and
p are the electron and hole densities, N+

D andN+
A are the

doping e�ective concentrations, and Jn and Jp are the
electron and hole current densities, respectively. The
term R represents the volume recombination term, tak-
ing into account Schokley{Read{Hall, Auger and band{
to{band recombination mechanisms [5].

The carrier currents are controlled by drift{di�usion
mechanisms, and may be expressed by:

Jn = �q�nnr(�n) (4)

Jp = �q�ppr(�p) (5)



Figure 1: Structure of Transistor

where �n and �p are the mobilities of electrons and
holes, and �n and �p are the quasi{Fermi potentials of
electrons and holes.

Assuming a single parabolic conduction band, the
electron and hole density can be expressed as [6]:

n = nien exp

�
q � q�n

kT

�
(6)

p = niep exp

�
q�p � q 

kT

�
(7)

where nien and niep are the intrinsic carrier concentra-
tions. The formulation for carrier concentrations is sim-
ple and compact. Parameters nien and niep may include
di�erent phenomena that a�ect the concentrations at
high doping levels: in
uence of Fermi{Dirac statistics,
changes in the energy levels and variations in the e�ec-
tive densities of states.

These equations are scaled using the scaling pre-
sented in [7]. Next, the �nite element method [8], [9]
should be applied in order to discretise the scaled equa-
tions, thus obtaining a system of nonlinear equations,
with range N , where N is the number of nodes of the
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Figure 2: Mesh and partition of the transistor

discretisation [10]. However, the discretisation of Jp and
Jn require particular care. It is necessary to use special
schemes such as the Scharfertter{Gummel one [7].

We have applied QMG package to generate the tetra-
hedral meshes [11]. That software can generate �nite
element meshes in two and three dimensions. We use
the three dimensional mesh generator which it is based
on octree algorithm. We have shown the structure of
the transistor we have simulated in �gure 1, and the
mesh with 26411 nodes and 142358 elements we have
obtained in �gure 2. We have used a mesh grading con-
trol function to place small tetrahedral near of interface
between di�erent region where the values of the simu-
lation change very quick. If a mesh re�nement is nec-
essary, it is possible to use a routine which subdivides
every tetrahedron into eight smaller tetrahedra.

2.1 Numerical Solvers

The part relating to the resolution of linear systems
is the one that uses the most computational time, above
all in the three-dimensional case in which the dimensions
of the associated linear systems are very high. Amongst
the di�erent types of iterative methods that exist we
have implemented domain decomposition methods in
our simulator.

In order to be able to apply these techniques it is
necessary to partition the mesh into subdomains. We
have selected Metis program to partition the mesh be-
cause it provides high quality partitions, it is extremely
fast, and it provides low �ll orderings. In the �rst place,
we use it to divide the mesh in p parts to execute our
simulator and to solve the associated linear systems on
a parallel computer. The main problem is to partition
the vertices of a graph in p roughly parts, such that the
number of edges connecting vertices in di�erent parts is
minimized. The algorithms in Metis are based on multi-
level graph partitioning [12]. We have indicated a mesh
of the transistor in 3 subdomains in �gure 2 using dif-
ferent colours. Also, we have used a Metis function in
our simulator to compute �ll reducing orderings which
is based on the multilevel nested dissection algorithm.

Then, we have used the library of parallel sparse it-
erative solvers, called PSPARSLIB to solve these lin-
ear systems in parallel. The preconditioners provided
with the library encompass a number of \standard" op-
tions for preconditioning distributed sparse matrices,
such as overlapping block Jacobi (overlapping additive
Schwarz), multicolor block SOR (overlapping multicolor
multiplicative Schwarz), Schur complement techniques,
distributed ILU(0), approximate inverse precondition-
ers, etc. A great advantage of this library is that it is
optimised for several powerful multicomputers, and it
has been tested on the CM5, CRAY{T3D, CRAY T3E,
Convex Exemplar, IBM SP2, IBM and SGI workstation
clusters. We have tested some of these solvers, and in



Figure 3: Parallel performance for the gradual hetero-
junction transistor

general the best results were obtained using Schur com-
bined with ILU preconditioner [2].

3 RESULTS

We have applied the simulator to a device with a
gradual heterojunction of AlxGa1�xAs/GaAs [13]. It
has �ve zones: the sub{collector (SC), the collector (C),
the base (B), the gradded{emitter (GE) and the emitter
(E) as it is showing in �gure 1. The aluminium mole
fraction changes from 0.3 to 0.0 in 1000 �A, where it
reaches the emitter{base junction. The doping pro�le
and the dimensions of each zone are shown in table 1
and table 2.

The simulator was developed for distributed{memory
multicomputers using the MIMD strategy (Multiple Ins-
truction{Multiple Data) under the SPMD paradigm (Sin-
gle Program{Multiple Data). It was implemented using
C and Fortran together with the MPI (Message Pass-
ing Interface) message passing standard library [14].
The main advantage of using this library is that it is
presently implemented in many computers, which guar-
antees the portability of the code. A CRAY T3E dis-
tributed memory multicomputer was used to simulate
these devices. This computer is a very powerful and 
ex-
ible parallel scalable system. It comprises up to 2,048
processors connected by a wide bandwidth bidirectional
3{D torus network. Using this computer we have mea-
sured the number of MFLOPS (Million of Floating Point
Operations Per Second) that are obtained for this grad-
ual heterojunction bipolar transistor. The results ob-
tained are shown in �gure 3. It can be seen that the
values obtained in this simulation show that the simu-
lator obtained is scalable.

We show the di�erent values that were attained for
current density in �gure 4. The voltage for this gradual
HBT is shown in �gure 5 using VBE = 1:4 v. We cal-
culated the parameters of a small signal [15], which are
shown in table 3.

Table 1: Doping pro�le of AlxGa1�xAs/GaAs gradual
HBT.

Zone Region Doping Ne� (cm
�3)

1 Emitter n{Al0:3Ga0:7As 2.0�1017

2 Graded Emitter n{AlxGa1�xAs 2.0�1017

3 Base p{GaAs 5.0�1018

4 Collector n{GaAs 5.0�1016

5 Sub{collector n{GaAs 2.0�1017

4 CONCLUSIONS AND FUTURE

WORK

In this work we have presented the simulation of
an AlxGa1�xAs/GaAs gradual heterojunction bipolar
transistor (HBT) using a three-dimensional parallel sim-
ulator of bipolar devices. This simulator is based on
drift{di�usion transport model, and the equations of
which are discretized by using the �nite elements method
(FEM). Fermi{Dirac statistics is considered in our model
and a compact formulation is used that makes it easy to
take into account other e�ects such as the non{parabolic
nature of the bands or the presence of various subbands
in the conduction process.

The program was implemented using C, Fortran and
the message passing interface library MPI, due to which
we have obtained a portable parallel code in the major-
ity of current architectures, which is a great advantage
over sequential simulators. All the data were measured
on a CRAY T3E distributed{memory multicomputer.
We have applied the simulator to a gradual heterojunc-
tion of AlxGa1�xAs/GaAs, and we have given the di�er-
ent values that were attained for small signal parameters
and current densities.

As future work, we are going to simulate other grad-
ual HBTs, and we are going to implement a new numer-
ical algorithms in our simulator to study abrupt HBT.
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Table 2: Dimensions of AlxGa1�xAs/GaAs gradual
HBT.

Region � X(�m) � Y(�m) � Z(�m)
Emitter 1.0 0.5 0.6

Graded Emitter 1.0 0.5 0.1
Base 2.0 1.5 0.1

Collector 2.0 1.5 0.5
Sub{collector 2.0 1.5 0.2
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Figure 4: Collector and Base current densities

Table 3: Parameters of small signal for the gradual HBT
VBE (V)

1.4 1.5

gm (A/V) 6:4 � 10�02 2:2 � 10�02

CT (F) 7:5 � 10�14 4:8 � 10�14

fT (Hz) 7:2 � 10+10 1:3 � 10+11

�EC (seg.) 2:1 � 10�12 1:1 � 10�12
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