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ABSTRACT 

The diffusion-induced stresses in silicon wafers were 
studied. The effect of local electric field on dopant diffusion 
was considered in the diffusion equation. Only one-
dimension problem with a constant surface dopant 
concentration was investigated. The closed form solutions 
of stresses and expansion of the wafer arising from dopant 
diffusion are obtained on the basis of linear elastic theory. 
The results show that the wafer surface is always under 
compression, while at the wafer center the stress is tensile. 
The maximum compressive stress is at the surface of the 
wafer at the initial time, which is independent of the local 
electric field. The stress at the wafer surface decreases with 
time. It increases with local electric field and gradually 
approach to zero with time. 
 
Keywords: one-dimensional diffusion, stresses, electric 
field, wafers, and MEMS. 

INTRODUCTION 

 Fabrication of microsystems starts with the same 
techniques used in silicon integrated-circuit chips in 
microelectronic industries. The techniques make it possible 
to fabricate many functional chips in a single silicon wafer, 
which dramatically reduce the cost of production. A variety 
of microelectromechanical devices have been constructed 
from combinations of flexible elements. The fabrication 
techniques include photolithography, surface micro-
machining, and bulk micromachining.  
 In the fabrication of Microsystems, diffusion is a 
frequently used technique for the incorporation of dopant 
atoms into silicon substrate. The diffusion of impurity atoms 
into a semiconductor wafer leads to the formation of p-n 
junctions, conduction channels. The performance of the 
microelectronic devices and MEMS devices depends 
critically on the impurity concentration and the impurity 
profile. Therefore, the diffusion of various impurities in 
semiconductors has been studied extensively.  
 Diffusion-induced stresses essentially affect the 
performance and reliability of MEMS devices, which during 
anomalous mass transfer degrade electrical properties of 
semiconductor systems [1]. Diffusion-induced stresses in 
semiconductor materials were originally proposed by 
Prussin [2]. Li [3] analyzed the diffusion-induced stresses in 
an elastic medium of simple geometry. Lee and coworkers 
[4, 5] studied the effect in composite materials. Larche and 

Cahn [6, 7] investigated the stresses arising from material 
inhomogeneities. However there is little study on the effect 
of diffusion on the stress evolution in microstructures used 
in MEMS devices and microelectronic devices. This 
promotes us to study the diffusion-induced stresses in a 
wafer. Here the wafer is simplified as a one-dimensional 
thin slab, from which the dopant concentration with constant 
injection concentration at surfaces is solved analytically. 
Then the stresses generated by the dopant diffusion are 
calculated. 
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Fig. 1 Schematic diagram of a semiconductor wafer 

CONCENTRATION DISTRIBUTION 

 Consider a semiconductor wafer of width 2 0h , which 
is simplified as a thin slab as shown in Fig. 1. The diffusion 
is treated as one dimension in x  direction. The diffusion 
equation [8] taking the effect of electric field into account is 
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where D  is the diffusivity of impurity, C  is concentration, 
e  is the absolute magnitude of the charge on electron, T  is 
the absolute temperature, k  is the Boltzmann constant. 
Equation (1) was solved by using the Laplace 
transformation. For impurity concentration being constant 
C0  for all t > 0  at both surfaces and initially the wafer 
being dopant free, the concentration of the dopant in the 
wafer for h x0 0> ≥  is 
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If the effect of electric field is negligible, the dopant 
concentration in the wafer becomes 
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Figure 2 shows the dopant concentration in the wafer with 
no electric field. The gradient of the dopant concentration at 
the center of the wafer is zero. The dopant gradually 
penetrates into the wafer with time and the its concentration 
at the center of the wafer increases with time and eventually 
reaches the same concentration as in the wafer surface. 
Figure 3 shows the dopant concentration in the wafer in 
electric field. As expected, the local electric field created 
internally under high dopant-concentration concentration 
enhances the diffusion of dopants.  

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

C
/C

0

x/h
0

Dt/h
0

2=0.75

0.5

0.25

0.1

0.01

 
Fig. 2. Dopant distribution in the wafer (E=0) 
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Fig. 3 Dopant distribution in the wafer 
at different time ( eEh kT0 10/ = ) 

-1

-0.5

0

0.5

0 0.2 0.4 0.6 0.8 1

σ yy
/[C

0Ω
E

/3
(1

- ν
)]

x/h
0

eEh
0
/kT=10

Dt/h
0

2=0.05

0.01
0.001

0.1

~

 
Fig. 4 Stress distribution in the wafer 
at different time ( eEh kT0 10/ = ) 
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Fig. 5 Time dependence of stress at the wafer surface 

 
STRESS DISTRIBUTION 

 
 For the present purpose, only linear elastic deformation 
of the wafer is considered. The equilibrium equation is 

∇ ⋅ =
t
σ 0   (6) 

where 
t
σ  is the stress tensor. The relationships between the 

strain tensor ( ε ij ) and the displacement components ( ui ) is 
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The constitutive relations are 
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where Ω  is the partial molar volume of the dopant, 
~
E   and 

ν  are the Young’s modulus and Poisson ratio of the 
semiconductor wafer.  
 Considering the one-dimension problem as shown in 
Fig.1, assume both y  and z  directions of the wafer are 



constrained with no variation in their dimensions. The 
stresses generated in the wafer by the dopant diffusion are 

σ xx = 0  and σ σyy zz=  = − −ΩCE~ / ( )3 1 ν . These 

stresses create both axial forces and moments in both y  and 

z  directions. Release of these axial forces and moments 
will remove the dimensional constraints in both y  and z  

directions. This gives  
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Fig. 6 time dependence of stress at the wafer center 

 
Figures 4-6 show the stress evolution in the wafer with time. 
The wafer is under compression near the surface while it is 
under tension at the center. The maximum magnitude of the 

stresses is − −C E0 3 1Ω ~
/ ( )ν  at the surface at the initial 

time, which is independent of electric field. The stress at the 
wafer surface decreases with time. As shown in Fig. 5, the 
surface stresses increases with decreasing local electric field 
and gradually approach to zero with time. The time 
derivative of the surface stresses increases with local 
electric field. The stresses developed at the wafer center first 
increases with time and reaches a maximum, then decreases 

with time as shown in Fig. 6. The maximum stress at the 
center of the wafer increases with local electric field.  
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Fig. 7 Time dependence of wafer expansion 

 
EXPANSION OF WAFER 

 
 Based on the constitutive relation (8), the transverse 
strain of the wafer due to dopant diffusion is 
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 Substituting Eq. (9) into Eq. (10), there is 
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Integrating Eq. (11), the transverse expansion of the wafer 
due to dopant diffusion is 
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The effect of the dopant diffusion the transverse expansion 
of the wafer is shown in Fig. 7. The expansion increases 
with the local electric field and time, which reaches the 
maximum 2 30 0C hΩ /  when the dopants uniformly 
distribute in the wafer. The wafer expands much faster at the 
initial time than that at long time, because of the gradient of 
dopant concentration as shown in Fig. 2.  
 

SUMMARY 
 
 The diffusion-induced stresses in silicon wafers created 
in the doping processes have been studied by considering 
diffusion problem in a thin layer of wafer. The local electric 
field created by the ionic dopant diffusion has been 
incorporated into the analysis of dopant diffusion and its 
effect of diffusion-induced stresses. One dimensional 
diffusion problem with constant surface dopant concen-
tration was solved by using the Laplace transforms. The 
results show that the electric field enhances the dopant 
diffusion.  Using the relationship between strain tensor and 
dopant concentration, the closed form solutions of stress 
fields developed during the dopant diffusion in the wafer 
were obtained. The maximum magnitude of the stresses is at 
the surface at the initial time, which is independent of 
electric field. The wafer surface is always under 
compression, while at the wafer center the stress is tensile. 
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