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ABSTRACT

Quantum effects are known to occur in the channel region
of MOSFET devices, in which the carriers are confined in
a triangular potential well at the semiconductor-oxide in-
terface.  Typically, these effects are quantified by a simul-
taneous solution of the Schrödinger and Poisson equations,
which can be a very time consuming procedure if it needs
to be incorporated in realistic device simulations.  We have
developed a simple and very efficient approach of ap-
proximating quantum effects by using an effective potential
that takes into account the natural non-zero size of an
electron wave packet in the quantized system. The benefits
of the effective potential approach are that it eliminates the
need for a full solution to the Schrödinger equation, thus
leading to low additional computational cost.  In this pa-
per, the approach is applied in the investigation of the role
of quantum-mechanical space-quantization effects in the
operation of 0.1 µm MOSFET device and recently pro-
posed SOI device structure.

Keywords: ultra-small MOSFETs, quantization, Monte
Carlo simulation, SOI devices.

1.  INTRODUCTION

Quantum effects are known to occur in the channel of
MOSFETs, where the confinement is in the direction nor-
mal to the semiconductor/oxide interface. For quite some
time, there have been attempts to determine the role this
quantization plays in semiconductor devices.  Often, this is
found by coupled solutions of the Schrödinger and Poisson
equations to find the actual position of the charge and the
changes in mobility and capacitance [1,2]. This, however,
can be a very time consuming procedure. For this purpose,
we have developed a simple and very efficient approach of
approximating quantum effects by using an effective po-
tential that takes into account the natural non-zero size of
an electron wave packet in the quantized system. This ef-
fective potential is related to the self-consistent Hartree
potential, obtained from Poisson’s equation, through an
integral smoothing relation
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where G is a Gaussian with standard deviation a0.  This
method eliminates the need for a full solution of the 1D or
2D Schrödinger equation and has a low computational
cost, with less than 10% increase in CPU time.

One of the questions that one would naturally ask when
using this approach is related to the actual value of the
Gaussian smoothing parameter a0.  Also, there has been a
debate as to whether the smoothing parameter will depend
upon the shape of the confining potential or the substrate
doping density.  For this purpose, we first apply the effec-
tive potential approach to simple MOS capacitor structure
in which the band-bending leads to triangular confinement.
The oxide thickness of the MOS capacitors being simu-
lated is 6 nm, and the substrate doping equals 1017 and 1018

cm-3, respectively.  The results of these simulations are
shown in Figures 1(a) and 1(b), where we plot the gate-
voltage dependence of the inversion charge density, and
the average distance of the carriers from the interface.
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Fig. 1 (a) Sheet electron density and (b) average displacement of the
carriers from the semiconductor/oxide interface, as a function of the gate
voltage.   For each doping density, we use classical charge description,
fully quantum-mechanical charge description via SCHRED [3], and
Gaussian smoothing of the Hartree potential (effective potential ap-
proach).



From the results shown in Fig. 1, it is obvious that the use
of a single Gaussian smoothing parameter a0 = 0.5 nm
along the growth direction, can quite accurately describe
the reduction in the inversion layer electron density due to
quantum-mechanical space-quantization effect. It also
leads to accurate description of the displacement of the
carriers away from the semiconductor-oxide interface,
which, in turn, gives rise to finite quantum capacitance, in
series with the oxide capacitance.

The above described effective potential approach was
introduced into three-dimensional MOSFET simulations in
which the transport is handled by an ensemble Monte
Carlo approach using non-parabolic bands and simulating
particles (~30,000 typically) throughout the device rather
than just in the channel. We consider two situations. The
first is the case of a 50 nm MOSFET device, in which the
major quantum confinement occurs in the direction normal
to the oxide interface.  In this case, we find that the thresh-
old voltage is shifted and the carrier density is moved away
from the interface, in excellent agreement with earlier
simulations using a full solution to the Schrödinger equa-
tion.  Importantly, the mean velocity of the carriers is not
affected significantly by the introduction of this effective
potential, and is only reduced by about 10%. Secondly, we
consider a SOI MOSFET with a very narrow channel, such
that quantum confinement is now two-dimensional and
occurs both perpendicular and parallel to the oxide inter-
face [4].  We find that a Gaussian smoothing parameter a0

= 0.64 nm (the theoretical value) gives accurate charge
description in the channel region of this device.

2.  RESULTS FOR THE 50 nm MOSFET

 A schematic of the 50 nm MOSFET we simulate is
shown in Fig. 2. The channel doping equals 1018 cm-3,
source/drain doping is 1019 cm-3 and junction depth is 36
nm. The oxide thickness is 2 nm and the width of the de-
vice being simulated is 0.8 µm.
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Fig. 2  Schematic of the 50nm MOSFET that is modeled

The 2D Poisson’s equation is solved using an ILU de-
composition method.  A non-uniform tensor-product grid
is used with 0.5 nm size normal to the interface and 1 nm
parallel to the interface in the active channel region.  In the
actual simulation, ~30,000 particles are included, although

most of the particles reside in the source and drain regions.
In agreement with the earlier discussion, the values of the
Gaussian smoothing parameter a0 are taken to be 0.5 nm
normal to the interface and 1.0 nm along the channel.

In Fig. 3, we show the conduction band edge, found in
the device simulation, for the bias conditions VG = VD =
1V.  From the results shown in the bottom panels, one can
see that the effective potential shifts the conduction band
edge upwards. It, thus, accounts for the so-called band-gap
widening effect due to the quantum mechanical quantiza-
tion in the triangular potential well near the Si-SiO2 inter-
face. The upward shift of the conduction band edge leads
to a reduction of the carrier density at the interface proper.
Also, the electron density is moved away from the inter-
face because of the perpendicular field in the vicinity of
the Si-SiO2 interface.  This later observation is more
clearly seen in the results shown in Fig. 4, where we plot
the average displacement of the electrons for two different
bias conditions.
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Fig. 3  Conduction band edge (top panel) for applied bias VG  = VD =
1V.  In the lower right (left) panel we plot the conduction band edge near
the Si/SiO2 interface when the effective potential is included (omitted) in
the simulations.
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Fig. 4  The “center of charge” for the inversion electrons along the chan-
nel.



The quantization of charge in the inversion layer pro-
duces an expected increase of the threshold voltage in the
channel.  In Fig. 5, we plot the linear drain current as a
function of the gate voltage, for a drain voltage of 0.1 V.
It is clear that the turn-on of current is shifted by about 80
mV.  The actual threshold voltage is quite difficult to de-
termine in a Monte Carlo simulation.  Here, we average the
charge over the entire channel in order to estimate the in-
version charge at any one point. This is done with low
drain bias to keep the channel as homogeneous as possible.

In Fig. 6, we plot the device output characteristics.  The
observed reduction in output current is largely due to the
increase in the threshold voltage in the device.  Conse-
quently, the quantization mainly affects this threshold volt-
age, which is a property of the confinement normal to the
interface, whereas the transport is largely parallel to the
interface. Also, the degradation of the drain current is
larger for higher gate voltages, i.e. when the quantum-
mechanical space-quantization effect at the source side of
the channel becomes more prominent.
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Fig. 5 Transfer characteristics of the 0.1 µm MOSFET device being
simulated, in which one clearly sees the shift in the threshold voltage
due to the quantum-mechanical space-quantization effect.
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Fig. 6  The output characteristics for the device simulation discussed
here.  The decrease in output current, with the effective potential, is
largely due to the threshold voltage increase.

3. RESULTS FOR THE SOI-DEVICE

A schematic of the SOI device structure [4] that we simu-
late is shown in Fig. 7 .  It consists of a thick silicon sub-
strate, on top of which is grown 400 nm of buried oxide.
The thickness of the silicon-on-insulator (SOI) layer is 7

nm, with p- region width between 7 and 15 nm.  On top of
the SOI layer sits gate-oxide layer, the thickness of which
is 34 nm.  The conductance of the channel is modulated
with the variation of the top gate voltage.  It is important to
note that, in contrast to standard MOSFET devices, in
which space quantization occurs along the depth of the
device, the SOI device is an example of a device structure
in which two-dimensional quantization effect (along the
depth, or y-axis, and width, or z-axis) is important.  This, in
turn, necessitates the solution of the 2D Schrödinger equa-
tion if accurate charge description in the channel region of
the device is desired.  The repeated solution of the 2D
Schrödinger equation at several slices perpendicular to the
x-axis (device length), self-consistently with the 3D Pois-
son equation, can be very time-consuming process.  For
this purpose, as already mentioned earlier, we examine the
applicability of the effective potential approach for this
type of confining potentials.
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Fig. 7 Schematic description of the SOI device being investigated.

As for the case of a triangular confinement, we need to
determine whether the theoretical model from Ref. [5]
leads to appropriate Gaussian smoothing parameters along
the depth and width of the device.  To accomplish this
task, we only consider the channel region of the device
from Fig. 7, which, if uniform, is nothing more than a
quantum wire, i.e. a structure in which carriers are free to
move only along the x-axis, but are confined along the y-
and z-axis.  The simulation results for the electron line
density obtained with the effective potential approach are
compared against the self-consistent simulation results
obtained via the solution of the 2D Schrödinger equation
coupled with the 3D Poisson equation.  We would like to
point out that, because of the pronounced mass anisotropy
in the Si material system and the multi-valley nature of the
lowest conduction bands, the six conduction band valleys
in Si are included through a standard three-valley model.
Valley pair 1 points along the (100) direction having mx =
ml  = 0.91m0 and my = mz = mt = 0.19m0. Valley pair 2
points towards the (010) direction and has mx = mz = mt and
my = ml, and valley pair 3 points in the (001) direction,
having mx = my = mt and mz = ml. As a result of the above,



at each iteration step, one needs to solve the 2D
Schrödinger equation, of the form
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three times, i.e. for each equivalent valley pair ν.  Once the
energy eigenstates and the corresponding eigenfunctions
are known, the 3D electron density is found by using
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where the factor of 2 accounts for valley degeneracy, the
double sum represents summation over all energy eigen-
states (index j) belonging to each of the three valley pairs
(index ν) and the line charge density is given by
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where T is the temperature and kB is the Boltzmann con-
stant. In the actual evaluation of the Fermi-Dirac integral
of order -1/2, which appears in Eq. (4), we use the follow-
ing approximate expression [6]
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where ( ) TkEE BjF /ν−=η , a=6.68, b=1.72 and c=4.11.

The calculated gate-voltage dependence of the line density,
for the test device structure with homogeneous confine-
ment along the x-axis, is shown in Fig. 8.  For each wire
width (7, 10 and 15 nm) we use both the effective potential
approach and the self-consistent solution of the 2D
Schrödinger-3D Poisson problem.  Excellent agreement is
observed between the two approaches when using the theo-
retical value for the Gaussian smoothing parameter, which
suggests that the effective potential approach can be used
successfully for more complicated confining potentials.
The transport properties of this device structure are cur-
rently being examined and will be presented elsewhere.

4.  CONCLUSIONS

We used an effective potential approach to take into
account the quantum-mechanical space-quantization ef-
fects in a 50 nm MOSFET device and SOI device struc-
ture.  We find that the charge reduction and its average
displacement from the interface lead to ~80 mV threshold
voltage shift in the regular MOSFET device.  This, in turn,

gives rise to about 20% reduction of the on-state current.
We also demonstrate that the effective potential approach
can be successfully used in the case of more complicated
confining potentials, such as the 2D confinement in the
channel region of the SOI device from Fig. 7.
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Fig. 8  Variation of the line charge density for a quantum wire that rep-
resents the channel region of the SOI device structure from Fig. 7.  The
wire width equals 7, 10 and 15 nm.
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