
ABSTRACT
In this paper, we examine optical propagation tech-

niques for modeling and simulating optical MEM systems.
We determine an appropriate technique through studying
two criteria: the requirements established by the physical
properties of these systems and the goal of having an inter-
active CAD tool.  After examining several classical meth-
ods, we conclude with the choice of an optical propagation
method and the implementation of this method in our free-
space opto-electro-mechanical CAD tool, Chatoyant.

Keywords: MEMS-CAD, optical MEMS, MOEMS, micro-
optics

1  INTRODUCTION
Optical MEMS (micro-electrical-mechanical systems)

have the potential of drastically reducing the size and cost of
digital communications and computation systems.  For
example, optical free-space MEM switching systems have
numerous advantages over typical waveguide or fiber
switching systems, including the reduction of coupling loss
and crosstalk, while being independent of wavelength,
polarization, and data format [11].  These scalable MEM
free-space switches have been reported as 10 times smaller
and faster than typical fiber-based switches,  while requiring
only 1/100th of the operating power [9].  These systems also
have increased system reliability and reduced system costs.
However, for this technology to continue to grow and be
profitable, a CAD framework for modeling, simulating, and
analyzing optical MEMS is required to reduce the time and
cost of prototyping these systems.

CAD tools for conventional MEMS are being designed
in both academia and industry, including those by CMU [8],
Microcosm [7],  and MEMScap [6].  These tools typically
perform a finite element (FE) simulation of MEM compo-
nents, and many have extensions to a system-level evalua-
tion of electronics and mechanics.  One of the greatest
difficulties of adding an optical domain into system-level
MEM CAD tools is determining the appropriate abstraction
model for light propagation.  This determination is the focus
of this paper.

Optical propagation techniques range from simple ray
tracing to the complete vector solution of Maxwell’s equa-
tions.  Two factors in determining the appropriate propaga-
tion technique for our CAD tool are the physical parameters
of the optical MEM, or MOEM (micro-optical-electrical-
mechanical),  systems and the goals of the CAD software.
We want an interactive system-level tool that accurately
simulates optical MEM systems.  Therefore, the optical
propagation technique is required to be computationally
“reasonable”, such that the system designer does not have to
wait hours for a system simulation.

This paper examines optical propagation techniques,
with respect to optical MEM modeling.  We first define the
requirements for a system-level optical MEM CAD tool and
introduce our tool, Chatoyant.  Next, we examine typical
MOEM systems, determining the requirements established
by the physical properties of these components and systems.
We then examine the possible free-space techniques that can
be used for optical propagation in MOEM systems.  These
different techniques are compared in terms of validity and
their effectiveness in achieving our goals for the system-
level CAD tool.  We conclude by presenting preliminary
results of this optical propagation technique as used in
Chatoyant.

2  SYSTEM CONCERNS
As stated above, our goal is to create a system-level

CAD tool for the interactive design of optical MEM sys-
tems.  Therefore, we are not only striving for accuracy, but
we also require fast computation algorithms, producing
results in a reasonable time.  Additionally, a system level
tool needs to evaluate such system concerns as BER (bit
error rate), insertion loss, and crosstalk.  Therefore, the light
model must support optical power  information, such as
intensity, scattering, phase, and frequency (wavelength)
dependence, along with an ability to model diffractive
effects.

 Chatoyant, is our multi-level, multi-domain CAD tool
that has been successfully used to design and simulate free
space optoelectronic interconnect systems [5] and continues
to be extended to simulate optical microsystems [4].  Static
simulations analyze mechanical tolerancing, power loss,
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insertion loss, and crosstalk, while dynamic simulations are
used to analyze data streams with techniques such as noise
analysis and BER calculation.

To further identify the appropriate optical modeling
technique, we must examine typical optical MEM systems
and evaluate the available optical propagation techniques
which satisfy the requirements imposed by these systems.  

Optical MEM systems are created with both refractive
and diffractive components, therefore, diffractive optical
models are required for system modeling.  Further, current
optical MEM systems have component sizes and propaga-
tion distances of roughly ten to hundreds of microns.  For
example, typical micro-Fresnel lenses, found on such “sys-
tem-on-a-chip” demonstrations as an optical-disc pick-up
head, have a diameter of approximately 200 µm [11]; and
the diameter of the mirrors on Texas Instruments’s DMD
(digital micromirror device) chips, found in their digital
video projectors, are only 16 µm [3].  Since MOEMS are
fabricated with the same techniques as electronic VLSI
design, the size of a MOEMS chip does not exceed a couple
of millimeters, therefore, typical distances between compo-
nents (i.e., propagation distances) are approximately 100-
300 µm.  With these sizes and distances on the order of only
ten to a thousand times the wavelength of light, optical dif-
fractive models are required even for applications composed
of purely refractive components.  

An additional requirement of the optical propagation
method is that the optical models must easily interface with
fiber-based CAD tools.  Many commercial MOEM systems
have light sources off-chip, coming on-chip through fiber,
performing free-space computation (e.g. switching), and
leaving the chip again through fiber.

3  OPTICAL TECHNIQUES
Ray, or geometric, optics are the simplest of the optical

propagation methods.  This method traces rays of light
through refractive elements, however has no inherent sup-
port for the optical characteristics of light.  This is improved
by using Gaussian optics, which satisfies the paraxial Helm-
hotz equation in solving for optical parameters such as waist
size, depth of focus, intensity, and phase.  An additional
benefit of using Gaussian analysis is that we can approxi-
mate the behavior of the lasers used in these systems as
sources of Gaussian shaped beams.  The greatest advantage
of both these methods is fast computational speed, as com-
putational complexity for both Gaussian and ray optic mod-
els is on the order of the number of beams that are being
propagated.  Many software packages use these techniques
for macro-scale optics.  Limited diffraction modeling is sup-
ported for both these methods, however, a large propagation
distance and on-axis symmetry are required, which elimi-
nates these optical techniques from consideration.

Realizing that more stringent diffractive optical propa-
gation models are required, we continue our search for the
appropriate optical propagation method with scalar diffrac-

tion models.  These approximations are developed by recast-
ing Maxwell’s equations into a scalar form, where all
components in the electric and magnetic field can be sum-
marized by a single scalar wave equation.  The scalar meth-
ods calculate a complex wave function at an observation
plane.  This observation plane can be placed anywhere in the
system and captures the optical properties of intensity and
phase, meeting a requirement of the optical software.  

Figure 1 is a tree that begins at the top with Maxwell’s
equations and branches downward through the different
abstraction levels of scalar modeling techniques.  Along the
arrows, notes are added stating the limitations and approxi-
mations that are made to get to the next, less accurate model.  

All scalar diffraction solutions are limited by two
assumptions; the diffracting structures must be “large” com-
pared with the wavelength of the light and the observation
screen can not be “too close” to the diffracting structure.
The concept of “too close” is defined for each approxima-
tion model in Figure 2.  The figure shows where the diffrac-
tive models are valid with respect to the distance z
propagated past the aperture.

 Working from the bottom to top of Figure 1 and from
right to left of Figure 2, we investigate the least accurate of
these scalar approximations, the Fraunhofer approxima-
tion.   The advantage of this technique is the ability to imple-
ment a Fourier transform to solve the complex wave
function.  Most diffractive software tools perform Fraun-
hofer propagation, using a common FFT routine for quick
evaluation.  As shown in Figure 2, the Fraunhofer approxi-
mation is valid in the “far-field”, where the light has propa-
gated to a distance far from the aperture, and the diffraction
pattern is essentially the same as that at infinity.  To illus-
trate the problem of this method with respect to typical
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MOEM systems, we consider a system with an aperture of
50 µm and an observation plane of 200µm, using a 850 nm
source.  Using the equation found in Figure 2, the minimum
propagation distance for the Fraunhofer approximation to be
valid is 4.6 mm, far too large for typical MOEM systems.

To remove the limitation of the far-field, our study
moves up the tree, towards more rigorous optical models.
We next examine the Fresnel approximation, valid in both
the far and near field.  The “near field” is defined as the
region closer to an aperture where the diffraction pattern dif-
fers from that observed at an infinite distance.  No longer
can a fast Fourier transform be used for this calculation, as
an explicit integration must be calculated.   When solving
the minimum distance needed to propagate with the same
example system from before, we find the propagated dis-
tance must be larger than 966 µm, making this method also
invalid for optical MEM systems.  Therefore, our search for
an appropriate optical propagation method continues in
order to support the propagation region smaller than the near
field.

We next examine even more rigorous scalar diffraction
models, the Fresnel-Kirchoff and Rayleigh-Sommerfeld
scalar formulations. Both of these methods produce similar,
accurate results, again with the use of an explicit integration.
The difference between the two lie in their boundary condi-
tions.  Fresnel-Kirchoff has boundary conditions on both the
field strength and normal derivative, whereas the Rayleigh-
Sommerfeld removes this inconsistency and imposes
boundary conditions on either the field strength or the nor-
mal derivative, since they are related.  Unlike the Fresnel-
Kirchoff formulation, the Rayleigh-Sommerfeld is limited
to planar components.  However, for small angles, these
methods are identical.  These formulations are only limited
by the propagation distance being “greater” than the wave-
length of light.   We believe that these are the appropriate
optical propagation methods to use for the modeling and
simulation of current optical MEM systems.  However, we
must also evaluate their computation efficiency to ensure
our system-level CAD requirements are also satisfied.

Examining the Rayleigh-Sommerfeld equation, which
we choose to model over the Fresnel-Kirchoff due to sim-
plicity in the equation form [2], we see that an explicit inte-
gration is required:

,

where, k is 2π/λ, r is the distance from the source point (ξ,η)
to the observation point (x,y), z is the distance propagated, Σ
is the area of the aperture, and U is the complex optical
wave function.  The computation time of this scalar tech-
nique is based on the gridding of both the aperture and
observation plane.  For each grid point in the observation
plane, U(x,y), a double integration is performed over every
grid point in the aperture plane, U(ξ,η).  This is very costly
in computation time, however, reductions can be made.
First, computation time can be saved by decreasing the num-
ber of grid points used to represent the complex wave func-
tion, however, at a cost to accuracy.  Second, in systems
with radial symmetry, polar coordinates can be used which
reduces the integration to a single integral.  Finally, the inte-
gration algorithm performed factors largely in the computa-
tion time.  These factors are discussed in the simulation and
results section below.

For completeness, we must mention Maxwell’s equa-
tions, the vector solution for light propagation.  Although
the most accurate and valid at all propagation distances,
solving Maxwell’s equations is exceedingly slow since
complex vector operations are required.  Therefore this
model is not conducive for interactive system design.

4  SIMULATION RESULTS
In Figure 3, we show Chatoyant’s Rayleigh-Sommer-

feld simulation results of the same 850 nm plane wave, 50
µm aperture, and 200 µm observation plane example, as we
saw previously.  We compare our simulations with a 80x80
grid-point “base case” from MathCAD, which uses a Rom-
berg integration technique.  The table in Figure 3 shows the
computation time and relative error of the system (compared
with the base case) for different grid spacing.  Using a 96-
point Gaussian quadrature integration technique [1] we can
decrease the computation time an order of magnitude and
still remain within 2% accuracy.

We have also been able to interface our Rayleigh-Som-
merfeld scalar results into the fiber based software package,
BeamPROP [10].  As an example showing this interface,
Figure 4 shows a fiber coming on-chip, propagating through
free space, and returning off-chip through a fiber.  The
fibers are both 10 µm core, single mode fibers with an index
difference of .006, length of 1000 µm, and support 1550 nm
light.  There is a 100 µm gap of free-space between the
fibers.  A 1550nm Gaussian beam with a 10 µm waist is
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used to source the first fiber. 
Using Snell's law, the acceptance angle of this fiber is

6.3 degrees.  To illustrate the relationship of the acceptance
angle to the mechanical tolerancing for the system, we show
how tilting the end of the fiber effects the propagation of
light down the second fiber.  This tilt could occur by physi-
cal vibration, thermal expansion, or the mechanical mis-
alignment caused by the packaging of a MEMS device.
Figure 4 shows results as the beam propagates down both
fibers for three cases of tilt in the second fiber; 0, 2, and 6
degrees.  Chatoyant models the tilt of the fiber by tilting the
observation plane and solving the complex wave function
that is placed on the surface edge of the second fiber.  Figure
4 also contains Chatoyant outputs at the exit of the first fiber
and the entrance to the second, as the waist grows from
approximately 7 to 10 µm.  For the perfectly aligned case,
the beam is quickly accepted into the fiber.  However, as the
mechanical rotation is applied, the beam enters the fiber at a
tilt, resulting in the beam bouncing back and forth on the
core/cladding interface.  As we approach the maximum
acceptance angle of the fiber, most of the beam’s intensity is
lost through the cladding and little of the beam is left to
propagate down the fiber, as seen in the last case of the fig-
ure.

5  CONCLUSION AND SUMMARY
We have shown that determining the appropriate optical

propagation technique for optical MEM systems is non-triv-
ial.  The common propagation methods, Ray, Gauss, and
Fraunhofer (far field), used in standard optical CAD tools
are not appropriate.  We have shown that for MOEM sys-
tems, the optical method must be more rigorous, to accu-
rately model the small sizes and distances of propagation
used in these systems.  Even with our current modeling
efforts, we acknowledge that as these systems continue to
decrease in size, the evaluation of appropriate optical propa-
gation methods must continue.
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Figure 3:  Rayleigh-Sommerfeld Scalar Diffraction Performance

Time (min) Error (%)* Time (min) Error (%)*
160x160 17.75 X X X
80x80 4.45 0.637 120 0
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Figure 4:  Fiber to Free-Space to Fiber Propagation
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