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ABSTRACT

We perform a rigorous mathematical analysis of a
simple membrane based model of an electrostatically ac-
tuated MEMS device. Using both analytical and numer-
ical techniques, we prove the existence of a fold in the so-
lution space of the displacement, implying the existence
of a critical voltage beyond which there are no solutions
of the equation. This critical voltage corresponds to the
pull-in voltage observed in simpler lumped models, the
numerical solution of three dimensional models, and also
in experimental devices. We show how pseudo-arclength
continuation may be used to efficiently compute the so-
lutions on both sides of the fold.

Keywords: Actuator, MEMS, Asymptotics, Model-
ing, Continuation

1 INTRODUCTION

A large number of MEMS devices which rely on elec-
trostatic actuation have been investigated both exper-
imentally [1], [3] and through numerical simulation [2],
[3], [5]. However, the mathematical modeling and anal-
ysis of this effect has been relatively limited. A simple
lumped mass and spring model was first introduced by
Nathanson et. al. in 1967 [1]. Subsequently, numerous
authors have rediscovered and discussed lumped mass-
spring type models, see. e.g., [2]-[4]. Other authors have
considered more realistic models, for example, beam the-
ory is employed by Tilmans et. al. in [6], and the full
equations of linear elasticity are employed by Funk et.
al. in [5]. Nonetheless, the analysis of such models has
primarily relied upon linearization or numerical simu-
lation. In this paper, we introduce an idealized model
of an electrostatically actuated MEMS device. A sum-
mary of the analysis of this model, including asymptotic,
rigorous analytical and numerical results, is presented.
The detailed analysis is given in [7].

2 THE MODEL

We consider an elastic membrane suspended above a
rigid plate. Both membrane and plate are assumed to
be infinite in the 2z’ direction, of width L, and separated
by a gap of length [, as shown in Figure 1. A potential

difference V is applied between the membrane and the
plate, which are assumed to be perfect conductors.

Figure 1: Model of electrostatically actuated device.

Using the dimensionless variables v = ¢/V, u =
w/l,z =2'/L,y =y'/l, and t = ¢'T/vL?, where v’ is
the displacement of the membrane, T' is the membrane
tension, v is the viscosity, and ¢ is the potential, it can
be shown that the governing equations of the system are
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with «(£1/2) = 0 and ¥(z,-1) = 0, ¥(z,0) = 1.
Here ¢ = I/L is the aspect ratio of the device and
B = V2L?/8xTI3 is a dimensionless number which char-
acterizes the ratio between the electrostatic and me-
chanical forces in the system.

Sending the aspect ratio to zero allows us to explic-
itly solve for the potential, ¢ = (1+¥)/(1+u), reducing
the problem to one for u alone. If we restrict our atten-
tion to steady state solutions this is

du B
a2~ T rue ®)

This is the system we shall study throughout the re-
mainder of the paper.



3 ANALYSIS

3.1 Exact Solution

We note that (3) is exactly solvable, yielding an im-
plicit formula for u(z), valid for 8 > 0:
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Here the constant FE is readily identified as the total en-
ergy (per unit length). Applying u(1/2) = 0 we obtain
a further implicit formula for the energy as a function of
B which can be solved numerically. By careful searching
we find two solutions for 0 < 8 < g*. The two values of
E correspond to two different solutions u(z). In Figure 2
we plot u(z = 0,3) for 8 > 0 and in Figure 3 we show
u(z) for various values of 8. Now §'(E) = 0 at the criti-
cal value and using this condition and the expression for
B(E) we can numerically compute the critical value of 8
to arbitrary precision using any standard mathematical
computing package. Doing this, we find that the first 15
digits of 8* are 1.40001647737100.
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Figure 2: Central displacement of the membrane as a
function of 8.

3.2 Asymptotic Analysis

In this section, we employ perturbation techniques
to construct asymptotic approximations to the solutions
uncovered through our study of the exact solution.

We begin with the assumption that 8 <« 1 and first
seek approximations to the solutions on the upper part
of Figure 3. It can be shown that the first two terms in
a power series expansion of the solution for 3 small are
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Figure 3: Displacement of the membrane for various
values of 3.

Now we turn our attention to the goal of uncovering
the existence of other solutions to our problem. We
rewrite our governing equations in the form

2

(+uw Sy =5 ©)
and note that for 8 = 0, equation (6) posseses the solu-
tions u(z) = ax + b and u(z) = —1. If we attempt to
impose the boundary conditions u(£1/2) = 0, on either
solution, we are either faced with a contradiction, or are
led to the trivial solution. However, we may attempt to
use these linear pieces to build boundary layer solutions.
That is, we may allow the equation to be satisfied in var-
ious regions by the linear solution u(z) = az + b, and
then patch these regions together to obtain a smooth
solution by inserting boundary layers where necessary.
Clearly, there are multiple possibilities to consider. We
may immediately rule out many of them by noting that
any solution to the equation must be negative definite,
symmetric about the point z = 0, and convex (this is
shown in the next section). We consider one possible
construction, which is to take as an outer solution the
V-shaped function:

Uouter (%) = c|z| — ¢/2. (7

In order to construct a smooth solution, it is necessary to
insert a corner layer at z = 0. It can be shown that this
is only possible if ¢ = 2 and from this we may conclude
that only two solutions exist for 8 > 0.

3.3 Functional Analysis

In this section we shall use different techniques to
prove some additional properties of the model. We shall
show that for small negative 8 a unique positive solu-
tion exists to the problem. As 3 crosses zero a second



solution appears. The first upper solution is small and
negative and the second lower one is close to the V-
shaped function [z — 2|z|] — 1]. Most of the results
of this section will remain valid for convex domains in
higher dimensions and hence with little effort may be
applied to more complex models.

We first reformulate (3) as a fixed-point equation for
u In this particular situation the Green’s function can
be computed and we find

which leads to

1/2
u(@) = F(u, f) = 8 /_ g %d& (9)

From this it can easily be shown that u is an even func-
tion of z and that it is convex and that u(z) > u(0).

We show in [7] that it is possible to view the so-
lution set {(8,u)|u — F(u,8) = 0} as a manifold in
the product space R x H?(I) N H(I). This manifold
can be described as the graph of a function of 8 in a
neighborhood of (0,0) which is trivially a point on the
manifold. It is possible to show that for any smooth so-
lution u € H2(I) we have —1 < u(z) < 38(z+3)(z—1).
Hence there exists §* > 0 such that no smooth solution
exists with 8 > §* and as a first approximation we have
8* < 8. By another method we can show the much
sharper result 8* < 2|A1| & 1.46 where |A;| = n? is the
principal eigenvalue of the Laplacian.

The main result in this section is contained in a the-
orem which states that the solution has to decrease as
a function of 8 and that that there is 8* > 0 for which
the solution set is no longer the graph of a function of 3.
In other words the solution curve (8,u(8)) bends back
at (8*,u(8*)). This implies that there must be a second
solution for 8 < @*. From Figure 3 we can see that
it looks like as if the lower branch of the solution had
some limit as 8 goes to zero. We believe based on the
corner layer analysis that the convergence is towards the
V-shaped function 2|z| — 1, which has finite energy but
doesn’t lie in the space H?(I) N Hy(I). The fact that
u converges towards the V-shaped function is no sur-
prise since we know by now that any solution needs to
be strictly convex for positive 8 and that the V-shaped
solution is the only nontrivial solution of the limiting
equation uz;(1+u)? = 0 compatible with this property.

4 STABILITY

If we assume that the dynamics of the device are
viscosity dominated we may study the stability of the
states by adding a —uy term to the left hand side of (3).
Letting u(x,t) = uo(x) +v(z,t) where ug is a stationary
state and v € 1 + up, we may derive the eigenvalue

equation

d?v 25

dz? v (k 1+ u0)3) (10)
where v = V(z)e*. Positive (negative) values of k cor-
respond to unstable (stable) stationary states. In Fig-
ure 4 we show the first eigenvalue k as a function of 3 for
0 < g8 < B*. Note that the values for k¥ < 0 were com-
puted using ug on the upper branch while the values for
k > 0 were computed on lower branch. Note also that
the positive eigenvalues are shown only for 8 > 0.8. As
the membrane approaches the V-shaped limiting state
this eigenvalue appears to approach infinity.
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Figure 4: The first eigenvalue k as a function of 5.

5 ARCLENGTH CONTINUATION

Once it is known that the solution to the problem has
a fold we can use one of the path following techniques
due to Keller [11] to efficiently compute solutions for
both the stable and unstable branches. Here we show
how to use one such method, known as pseudo-arclength
continuation with the multilevel Newton method of Aluru
and White [9], [10] to produce a completely general al-
gorithm for computing all the stationary states.

We assume that we have “black box” routines which
solve the structural and electrostatic problems. The in-
put of the structural solver is a pressure, p, derived from
the electrostatic solution, while its output is the dis-
placement of the structure u. The input of the electro-
static routine is this displacement, which determines the
geometry of the domain, and its output is the pressure.
Hence the coupled electrostatic-mechanical system can
be written

u—S()=0, p—E(u)=0 (11)

where S stands for the inverse of the structural operator
(e.g., linear elasticity) and E stands for the inverse of the



electrostatic operator. Note that the electrostatic prob-
lem for our case reduces to computing the expression
E(u) = 8(1 + u)~? and the structural problem reduces
to S(p) = (d*/dz*)~" (p).

Now, the parameter § is undesirable because u'(G)
blows up at the fold. What we would like to do is repa-
rameterize the problem using a new parameter, s, in
such a way that u'(s) is smooth at the fold. Inspecting
Figure 2 we see that u(0) as a function of arc-length of
the curve (u(0, 8), ) should be well-behaved as a func-
tion of the length along the curve. Following Keller [11]
we use a “pseudo-arc-length” parameter, s, and repa-
rameterize the problem so that both v and 8 are func-
tions of s. To this end, we add
N = 0u(so) - (u(s) — u(s0)) + P(s0) - (p(s) — p(s0))]

+(1-6)B(s)(B(s) — B(s0)) — (s —50) =0 (12)

to the system (11) making 3 part of the solution vector.
The system for inversion at each Newton step is

I, w9, )
6 Op (1-6)8 Ap
u™ — S(p")
-| p"-E@") |. (13)
N(u™,p", ")

Details of how the Jacobian is inverted numerically are
given in [7].

In Figure 5 we show u(0) and 8 as functions of s for
0 < s <€ 8. Here the range was split into eight steps
and the linear approximation (12) was used within each
step. Each step was subsequently split into 10 substeps
at which the solution was computed. Since the pres-
sure blows up at x = 0 as the V-shaped solution is ap-
proached the total arc-length of the curve ||u||? + ||p||?
also blows up. Thus the curves flatten out as s becomes
large and 3(s) will only reach zero in the limit s — oo.

6 CONCLUSION

We have shown rigorously that a simple membrane
based model of an electrostatically actuated MEMS de-
vice contains a fold in its solutions space. The fold is
responsible for the existence of a critical voltage above
which there are no solutions. Additionally, the fold im-
plies the existence of a second solution, which we have
computed analytically and numerically. We presented
evidence that this second solution is unstable to per-
turbations while the first solution is stable and showed
how pseudo-arclength continuation can be an effective
method for computing both the stationary states and
the critical voltage. We speculate that these results will
apply to more general models in higher dimensions, us-
ing elasticity rather than tension, and that actual exper-
imental devices will possess both states, the second state
not normally being observable due to its instability.
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Figure 5: u(0) and 8 as a function of the arclength
parameter s. Solutions to the left of the peak in 8 are
the stable states while those to the right are the unstable
states.
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