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ABSTRACT
A study on the fluid-structure interaction using LSFEM is

presented.  To consider fluid-structure interaction,
staggered scheme, which solves fluid and structure
respectively by separate solvers in a predictor-corrector
fashion, is used.  To analyze fluid-structure interaction
effectively, LSFEM is introduced in analyzing the fluid
region.  2-D, incompressible and viscous fluid in the steady
state is considered.  The structure region is restricted in
plane strain state including nonlinear behavior, and is
analyzed by using commercial Galerkin FEM code
ABAQUS.  Also, a remeshing scheme for the fluid region
using artificial spring elements is suggested.

This solution procedure is applied to the flow around a
slender structure problem and microvalve problem. The
results are verified by comparing with the analytical
solutions.

1.  INTRODUCTION
In the micro-mechanical system such as microvalve and

micropump where the members are highly flexible, fluid
motion affects deformation of the structure and also
deformation of the structure affects fluid motion.  In the
case, fluid-structure interaction must be considered for the
analysis of the performance of the device.  In general,
staggered scheme, which solves fluid and structure
respectively by separate solvers in a predictor-corrector
fashion, is used.  However there are some difficulties in
solving fluid region by traditional mixed Galerkin method.
It often requires special treatments such as upwinding
scheme or artificial damping, and also LBB condition
between primal variables and dual variables must be
satisfied.  However, with least squares finite element
method(LSFEM) used in solving fluid domain, special
treatment will not be needed and there will be no LBB
conditions to be satisfied.  Also, discretized system matrix
will be always positive definite.  Therefore treating fluid
region with LSFEM has many benefits.

There are many attempts to solve the fluid-structure
interaction problems.  Nomura et al.[1] solved fluid with
streamline upwind Petrov-Galerkin method and modeled
structure with mass-spring elements.  Dyka et al.[2] and
Jeans et al.[3] solved fluid with boundary element method
and structure with the Galerkin method.  Ulrich et al.[4]
solved fluid and structure with the commercial Galerkin
FEM code FLOTRAN and ANSYS.

There have been numerous research works on LSFEM.
Jiang[5, 6] solved many types of fluid problem and
Maxwell equation with LSFEM.  Bochve et al.[7] and Cai
et al.[8] solved Stokes equation.  Cai et al.[9] and Siu et
al.[10] applied LSFEM to an elasticity problem.

LSFEM and structure with Galerkin FEM.  This algorithm
will be applied to the flow around a slender structure
problem and microvalve problem.

2.  LSFEM
For a given linear boundary value problem, governing

equations can be converted to first order differential
equations by introducing state variables.  Boundary
conditions can also be converted to the algebraic equations
between state variables and original variables.

Now let us consider the linear boundary value problem.
fAu =     Ωin  (1)
gBu =     Γon  (2)

A is the first order partial differential operator and B is a
boundary algebraic operator.  Suppose that )(2 Ω Lf .  An

appropriate subspace V of the Hilbert space )(2 ΩL can be

chosen as
}on  )({ 2 Γ=Ω= gBuLvV  (3)

For an arbitrary trial function, Vv  , residual function is
defined like as

fAvR −=  (4)

In LSFEM, a minimizer of the squared 2L norm of the

residual
2

0
R  is considered as a solution.
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In summary, the problem can be stated as:
Find Vu   such that

)(),( vFvuB = ,  Vv ∀  (7)

where

Ω=…
Ω
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The bilinear form (8) is symmetric. For a well-posed
problem (1), the operator A is bounded below.  As a
consequence, when discretized, (8) always lead to a
symmetric positive-definite matrix.

3.  FLUID-STRUCTURE INTERACTION
ALGORITHM

In the fluid-structure interaction problem, fluid affects
structure and also structure affects fluid.  To consider these
interactions a staggered scheme, which solves fluid and
structure respectively by separate solvers in a predictor-
corrector fashion  is used



as rigid.  Thus, no-slip condition is applied at the fluid-
structure interface and the traction can be calculated from
the solution of fluid region.  In solving the structure region,
the displacement of structure can be obtained.  Deformed
shape of the structure changes the fluid domain.  This
affects the fluid behavior.  The fluid region is remeshed for
the next iteration.  Flow chart of the solution procedure is in
Fig.1.

The detailed description of each step is described below.

3.1. Fluid region
In this research, incompressible and viscous fluid in

steady state is considered.  The non-dimensionalized form
of the governing equations are below.

fvpvv =−+? 2

Re

1
 (10)

0=?v  (11)
Re is the Reynolds number and f is the non-

dimensionalized body force. v  and p  are non-

dimensionalized velocity and pressure.  Since Eq.(10) is
nonlinear, linearization is needed.  In the successive
substitution method, (10) is linearized as

fvpvv =−+? 2
0 Re

1  (12)

The subscript Ô0Õ in the above equation indicates that the
value of the corresponding variable is known from the
previous calculation step.  This method has slow
convergence but a large radius of convegence.

To make (11) and (12) in the first order form like (1),
vorticity v↔=ω  is introduced as a third variable.

Therefore, first order form of the governing equations are
given as:

fpvv =↔++? ω
Re
1

0  (13)

0=↔− vω  (14)
0=?v  (15)

2-D form of (13)-(15) in the Cartesian coordinate can be
written as
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These equations can be written in simpler form:
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where
[ ]TT pvvu ω21=  (21)
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This first order type equation can be formulated with least
squares method as explained in chapter 2.

3.2 Structure region
In this research, deformation of the structure is

considered as a 2-D plane strain one with geometric
nonlinearity due to the large deformation. It is realized
using commercial Galerkin FEM code ABAQUS.

Traction boundary condition is applied on the fluid-
structure interface. Displacement of the structure can be
calculated. To check the convergence, an appropriate norm
and convergence criterion are chosen as
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u is the total displacement, u∆ incremental displacement

Fig.1 Flow chart of the solution procedure
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current step, remeshing of the fluid region is needed.

3.3 Remeshing of the fluid region
Performing remeshing of the fluid region, distorted mesh

leads to a bad numerical solution.  Therefore an appropriate
remeshing algorithm, which avoids distorted mesh, is
needed.

This is realized using spring element shown in Fig.2.
Finite elements in the fluid region are replaced with the
spring elements.  From the displacement solution of the
structure region, deform the fluid-structure interface.  From
the resulting deformation of the spring elements in the fluid
region, new mesh with minimum distortion can be
obtained.  In Fig.2, 1k  is related to the length of the each

side of mesh and 2k  is related to the diagonal length of the

mesh. Therefore 1k  is related to the volumetric deformation

of the mesh and 2k  is related to the deviatoric deformation.

Distortions in the region can be controlled by using
appropriate combinations of values of 1k  and 2k .

4.  EXAMPLES
4.1 Flow around a slender structure
Schematic diagram of the first example is in Fig.3.  A

channel is divided into two domains by clamped slender
structure.  The length of the structure is 0.75mm and
thickness is 0.01mm.  Fluid around the structure will cause
pressure difference and it will deflect structure, and
deflected structure will change the pressure difference.
Therefore fluid-structure interaction occurs.

Flow rate of the upper and lower domain of the fluid

respectively are sm /10177 26−↔  and sm /10354 26−↔ .  The

flowing fluid is water with density
3/1000 mkg=ρ , and

viscosity mskg /001.0=µ  and it is modeled as

incompressible viscous fluid.  The structure is made of
isotropic material with elastic modulus GPaE 200= , and
poisson ratio 3.0=ν .

When the structure is made of stiff material, deflection of
the structure will be small.  In this case we can obtain
analytical solution for pressure difference between upper
and lower surface of the structure and deflection of the
structure.  It is proposed by Wang[11].

Pressure difference between the upper and lower surface
of the structure is presented in Fig.4.  There are no visible
difference between the analytical method and the proposed
method which uses LSFEM.  Deflection of the structure is
presented in Fig.5.  There are also no visible difference
between the analytical method and the proposed method.
These results show that the proposed method works well.

4.2 Flow simulation of a microvalve
4.2.1 Modeling
Schematic diagram of a microvalve is in Fig.6.  The flap

and valve seat in the microvalve has an important role. The
flap consists of a thin plate with a length of 1700µm, a
width of 1000µm and a thickness of 15µm. The valve seat
has a squared form with a length of 400µm.

Top view of the microvalve is seen in Fig.7.  Flow occurs
through each side of valve seat. To reduce this 3-D problem
to a 2-D problem, consider section AAÕ of Fig.7.  AAÕ
section of dashed box in Fig.6 is seen in Fig.8.  The flow
rate of this 2-D problem multiplied by total valve seat
length 1600µm will be the flow rate of 3-D case.

Since the width and thickness ratio of the flap is very
large  deformation of the flap can be modeled as plane

Fig.2 Artificial element for remeshing
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Fig. 4 Pressure difference between the upper and
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Fig. 5 Deflection of the slender structure



isotropic material with elastic modulus GPaE 190= , and
poisson ratio 25.0=ν . The working fluid is water with

density
3/1000 mkg=ρ , and viscosity mskg /001.0=µ

and it is modeled as an incompressible viscous fluid

4.2.2 Results
Fluid region is modeled using bilinear elements. It is seen

in Fig.9.  The flap is modeled using 8 node quadratic

Flow rate of the microvalve according to the valve seat
pressure is calculated considering fluid-structure
interaction.  It is compared with the results of Ulrich et al.Õs
semi-analytical approach[4].  Ulrich et al. proposed a
method to calculate the flow rate of microvalve.  They
solved fluid region with the extended Bernoulli equation
which includes friction loss and solved flap motion using
cantilever beam deflection equation.  They solved
iteratively each region and obtained converged solution.

Flow rate of the microvalve according to the valve seat
pressure is presented in Fig.10.  Flow rate increases as the
valve seat pressure increases.  Flow rate of the proposed
method is lower than that of semi-analytical method. But,
the tendency of the flow rate is similar in both cases.
Deflection of the flap according to the valve seat pressure is
presented in Fig.11.  Deflection is nearly linear to the valve
seat pressure in the semi-analytical method, but is not in the
proposed method.  Because nonlinear effect is considered in
the proposed method but is not in the semi-analytical
method.  Deflection of the proposed method is lower than
that of the semi-analytical method. It is compatible with the
results of flow rates.

5.  CONCLUSION
In this research, a robust method for the analysis of fluid-

structure interaction in the micro-mechanical devices such
as microvalve and micropump is presented.  Making use of
aforementioned advantage of LSFEM, many types of fluid
problems can be analyzed without special treatment such as
upwinding scheme or artificial damping.  This method is
verified by some examples
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Fig. 6 Schematic diagram of the microvalve
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incompressible and viscous flow is considered.  Fluid
region is solved using LSFEM.  In the structure region,
plane strain case is considered and solved using commercial
Galerkin FEM code ABAQUS.  Nonlinearities due to large
deflection is considered.

As a first example, a flow around a slender structure is
studied.  The results from the present analysis were
compared with analytical results.  In the microvalve
problem, flow rate according to the valve seat pressure is
calculated.  Reasonably accurate results are obtained from
the proposed method.

As a future research, monolithic method for solving fluid-
structure interaction problems is considered.  By
formulating structure problem also with LSFEM, a
consistent monolithic method can be obtained.
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