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ABSTRACT

When designing microaccelerometers, microgyroscopes
and other microdevices, there is a strong need for dynamic
understanding in system level. Thus, dynamic simulation is
a part of many  CAD tools for MEMS [1]. In this work, a
relatively simple approach is presented for the study of the
dynamics of microdevices. The theoretical derivation of the
equations of motion is based on the Newton-Euler approach
and provides a matrix form that is convenient to integrate.
The dynamical model combined with models for
electrostatic actuation and squeeze film effects [2] is
verified by comparison with experimental results:  the
decaying motion of a microresonator due to an electrostatic
impulse. Good agreement between simulation and
measurements is shown. The pull-in angle and voltage are
simulated and compared to theoretical calculations that
were presented by the authors [3]. Finally, the model is
used for parametric study of the influence of geometrical
variations on the dynamics of a microgyroscope.
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1 THE DYNAMICAL MODEL

The dynamical model refers to the microdevice as a
general shaped rigid body of mass m and inertia I, as shown
in Figure 1. The body is attached to a rigid frame via Nk

elastic elements. Damping effects are modeled by Nd

damping elements attached to the body. In this section the
derivation of the dynamics is treated while the elastic and
damping loads are addressed in section 2. Three Cartesian
systems of coordinates are used: The inertial system is
designated eO , the frame system eF and the body fixed
system eB

. The origin of eF and eB coincide with the center
of mass of the frame and the body respectively. For the
rigid body, under the action of Fe Ð the external forces
resultant and Te Ð the external moments resultant, two
vector equations of motion can be written:
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Where r0cg is the radius vector of the bodysÕ center of mass
in respect to the inertial origin and H is the absolute angular
momentum vector of the body.  The motion of the frame is
constrained (pre-prescribed) and thus its absolute linear
velocity Ð VF, absolute linear acceleration aF, angular
velocity ΩF and angular acceleration ΓF are all known. The
angular velocity and angular acceleration of body m
relative to eF , resolved in em , are designated ωm

m and  αm
m

respectively. By using the classic Euler-Angles [4],  ωm
m

can be written as:  BFm λ where λ is a column vector
containing the first time derivatives of the  rotation-angles
and BFm is the appropriate transformation matrix. By time
differentiation of ωF

m , αF
m

  can be obtained. The absolute
angular velocity of  body m is designated ΩFm and is given
by  ΩF

F+ωF
m  and the absolute angular acceleration of m is

ΓF
m

  given by  Γ F
F

 + αF
m. ΩF

F and ΓF
F

  are the absolute
angular velocity and acceleration of the frame, respectively,
resolved in eF.  In the present derivation, the vector product
operator is replaced by the known tilde operator [5] to form
a linear operation between two matrices U and V:

VUVU
~=↔ (2)

Referring to Figure 1: rocg = roF+rFcg. The absolute angular
momentum vector is given by: Hm=IΩm. By substitution
rocg and Hm into equations (1a) and (1b) and differentiating
in respect to time, the following two vector equations of
motion are obtained, resolved in eF

:

Figure 1: Systems of coordinates and vectors definition for
the dynamical model.
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Aij is the transformation matrix used  to resolve a vector rj

given in ej in system ei. The underlined terms refer to
column vectors containing the second time derivatives of
the degrees of freedom. By rearranging Eqs. (3a) and (3b) a
matrix form for the equations of motion is obtained:

BXA =&& (4)

 A is a 6× 6 square matrix. ItÕs element are nonlinear
functions of the degrees of freedom and inertial properties
of the body. B is a 6×1 column vector. ItÕs elements are
nonlinear functions of: the degrees of freedom, their first
time derivative, the inertial properties of the body and the
external loads. X is a 6×1 column vector. ItÕs elements are
the second time derivatives of the degrees of freedom: three
Euler angles and three linear coordinates:
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The angles define the rotation between em and eF
  and the

linear coordinates define rFm. Equation (4) is linear in the
second derivatives of X and is very convenient for
numerical time integration. Equation (4) stands for 6 scalar
equations of motion for the rigid body having 6 degrees of
freedom.

2 THE  EXTERNAL LOADS

Three types of external loads are addressed in this work:
reaction loads transferred to the body by the elastic
elements (long beams) attaching it to the frame, damping
loads due to squeeze-film effects and electrostatic loads
used to excite mechanical motion of the body (actuation).

2.1 Elastic Reaction Loads

The body is attached to the rigid frame by long and thin
beams. The scope of this work is restricted to the classical
linear beams theory. Each element is modeled as a double-
clamped beam  numbered Bi. ItÕs attachments to the body
and to the frame are modeled by  attachment points
designated Pi and Fi  respectively Ð see Figure 1. Via these
points, the reaction torque Tri and force  Fri are transmitted
to the body.  Pi  and Fi  are the origins of the systems of
coordinates ePi

  and eFi respectively. While the angular
orientation and the distance between these systems is
known as initial conditions, they are calculated for each
integration step. The  orientation and distance between  ePi

and em is fixed because the body is rigid. The reaction
torque and force, as a function of the relative displacements
and angles between ePi and eFi are given by the classical
matrix form [6]:

εKf = (6)

Where f is a column vector of the 6 components of the
reaction loads resolved in ePi , K is the 6×6  stiffness matrix
and ε is a column vector of the three angles and
displacements. The elements of K  are function of the
beamÕs cross section dimensions, its length, and its material
properties. Matrix K presents elastic coupling between the
degrees of freedom. rcgpi is the radius vector between cg
and Pi thus, each reaction force Fri is associated with
reaction torque given by the vector product: rcgpi ×Fri. The
resultant reaction loads in respect to cg are obtained by
summing the reaction loads transmitted via each Pi.

2.2 Squeeze-Film Effect

In the general case, various damping mechanisms
(linear and non-linear) can be modeled as equivalent
damping loads transmitted to the body by Nd elements. In
this work, only the squeeze film effect will be treated as it
is the dominant mechanism in the microdevices under
consideration. In these devices, the main body is
performing a translation motion or angular motion relative
to a rigid surface  placed in a very narrow gap underneath.
Thus appropriate model for the squeeze effect should be
included. Analytical investigation of such mechanism
referring to translation as well as  angular motion was
reported in [2]. In the present model, a resultant spring
force and viscous-damping force are assumed to act on the
center of mass of the body. The spring and damping
coefficients are calculated by the above mentioned model
and they are frequency dependant. These assumption
coincides with the lumped model concept of this work.

2.3 Electrostatic Loads

The microdevices that are analyzed in this work are
electrostaticaly actuated. A simple classic model of the
electrostatic force between two parallel capacitor plates is
being used for  simplicity. The  force is given  by:
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Where ε is the dielectric constant of the  material  between
the plates, A is the plates area, V is the potential difference
between the plates and d is the nominal gap distance
between them.

3 VERIFICATION OF THE  MODEL

The theoretical derivation of the model and the
numerical results were verified by comparison with



experimental results, analytical calculations and  results
from other simulation methods.

3.1 Comparison with Experimental Results

The motion of a torsion microresonator was measured
by using external optical system. The microdevice is shown
in Figure 2.

Figure 2: The torsion microresonator.

The bulk-micromachined H shaped  is attached by two long
beams to the rigid frame. The proof mass is suspended
above  an electrical chip and an air capacitor is created
between them. By applying  voltage to each side of the
device an electrostatic force  tilts it  along the axis of
rotation created by the twisted beams. To measure the
motion a laser beam is pointed on the device face. The
reflected beam is detected by a two-halves detector. The
mechanical motion causes the reflected beam to sweep the
detector thus the detector electrical output is a measure of
the motion. The motion was created by  applying a 20 Hz
square wave  of 45% duty cycle. Each wave applies an
external shock to the device and its decaying motion can be
seen in Figure 3a as measured under 10 mTorr pressure
conditions.  The simulation results are given in Figure 3b.
These results show a normalized amplitude vs time because
the measurement system characteristics Ð transferring the
mechanical motion to electrical signal was not modeled. It
can be seen that in both cases, an amplitude decay of  97%
is obtained after 14 cycles and 0.008 seconds. Thus both
simulation and measurement converge to the same damping
ratio and natural frequency: 1750 Hz.

3.2 Comparison with Analytical Results

An analytical solution for the pull-in angle and voltage of
torsion microactuator was presented by the authors [3]. The
present model was used in successive runs  applying
increasing values voltage. The   steady state tilt angle was
obtained Ð till pull in occurred. In Table 1 the analytical
calculations are compared with simulation results showing
1% deviation in the voltage and 6.4% deviation in  angle.

Figure 3a: Damped motion measurements.

Figure 3b: Damped motion simulated.

θPI [mrad] VPI
 [V]

Calculation 3.1 48
Simulation 2.9 47.5
Deviation % 6.4 1

Table 1: Comparison between calculated and simulated
pull-in angel and voltage .

3.3 Comparison with more Experimental
Results  and Other Method of Simulation

In Figure 4 a micro spring-mass structure is shown with its
system of coordinates. This structure consists of a proof
mass and two long beams attaching it to a rigid frame. The
motion of the proof mass is sensed by a novel optical
method (MIDOS) based on alight source placed above the
proof mass, and photodetectors placed on a chip underneath
it. This method was discussed in details by the authors [7].
This microdevice was placed on a linear shaker creating
mechanical white noise and thus itÕs natural frequencies
were measured, as shown in Figure 5. The same system
model was simulated by a commercial software, ADAMS,
and by the current model to solve for the natural
frequencies.
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Figure 4: Micro-Mass-Spring Structure

Figure 5: Natural frequencies measurements.

ωnz [KHz] ωny [KHz]
Measured 1.992 3.224
ADAMS 2.212 3.218
Present Model 2.086 3.001

Table 2: Comparison between measured and simulated
natural  frequencies.

4 PARAMETRIC INVESTIGATION

The microdevice shown in Figure 4 can be used as a micro-
gyro. When the proof mass is vibrating in perpendicular to
the chip underneath,  and an angular rate input vector is
along the y axis, due to Coriolis effect, an output motion is
excited along the x axis. As was shown by the authors [8],
the sensitivity of the microgyro is highly dependant on its
natural frequencies and thus governed by its geometrical
properties. Of special interest is the influence of  changes in
the dimensions of the beams cross-section on the dynamical
performance. In Figure 6 the dependency of the minimum
detectable rate (MDR) on variations of the width of a
rectangular beam cross section is shown.  The MDR is
normalized by the nominal value designed as working
point. The plot is the result of a the full 6 degrees of
freedom simulation.

Figure 6: Minimum detectable rate vs beam cross section
tolerances.

5 DESCUSSION

A lumped dynamical model, combined with
appropriate models for external elastic loads, damping
mechanisms and electrostatic loads, form a powerful tool
for the early design phases of microdevices. The theoretical
model was verified by comparison with experimental
results , analytical calculations and  simulations obtained by
commercial software Ð showing good agreement. Finally,
the verified model was used to perform parametric study
showing its ability to predict the dependency of the
dynamical performance of a microgyro  on its  dimensions.
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