Self-Adapting Vertices for Mask-Layout Synthesis

Cin-Young Lee and Erik K. Antonsson*

California Institute of Technology
*Mail Code:104-44, 1200 E. California Blvd
Pasadena, CA 91125, USA, erik@design.caltech.edu

ABSTRACT

An efficient procedure for synthesizing MEMS mask-
layouts for a desired 3-D shape is discussed. This method
can greatly reduce the number of design and prototype
iterations required to produce a desired device. The
method is based on evolutionary algorithms, where the
locations of vertices in the polygonal mask-layout are
optimized, such that the resulting shape is ‘closest’ to
the desired shape [2], [3]. This work has been extended
here to include varying the number of vertices in the
mask-layout polygon(s), to free the designer from hav-
ing to make an initial estimate at the complexity of
the mask-layout required. Preliminary results are pre-
sented.

Keywords: mask-layout synthesis, bulk etching, evo-
lutionary algorithms

1 INTRODUCTION

Mask-layout creation for MEMS design is often an
iterative process that requires expert knowledge. This
difficulty arises from the highly nonlinear mapping of
mask-layouts to device shapes as a result of anisotropic
etchants. Hence, a mask-layout synthesis tool could sig-
nificantly reduce the number of design and prototype
iterations, while also freeing the designer from having
to deal with fabrication issues.

Such a tool has been developed using genetic algo-
rithms, a type of evolutionary algorithm. The genetic
algorithm approach allows for a highly robust search for
the optimal mask-layout that generates a desired device
shape [2],[3]. However, the initial implementation of this
approach had one significant drawback; the number of
polygon vertices in the mask-layout had to be specified.
By restricting the number of vertices to a fixed value,
the synthesis tool confined its search to a small subset
of all possible mask-layouts, perhaps leading to the in-
advertent neglect of novel and interesting mask-layouts.
As a result of these limitations, a new approach was de-
veloped here, based on evolutionary strategies (another
type of evolutionary algorithm), that is capable of pro-
ducing mask-layouts of variable dimensionality. This
approach then frees the MEMS designer from having to

make an initial estimate of the complexity of the mask-
layout, leading to fully automated mask-layout synthe-
sis.

We follow this introduction by reviewing evolution-
ary algorithms. Subsequently, we discuss the details of
our evolutionary strategy approach to mask-layout syn-
thesis. Preliminary results are shown next, followed by
a summary. The paper concludes with some notes on
future work.

2 EVOLUTIONARY ALGORITHMS

Evolutionary algorithms (EA’s) are population based
optimizers that crudely imitate biological evolution. The
idea is to manipulate population members using stochas-
tic, evolutionary operators (i.e., crossover and muta-
tion), which should, in practice, increase the average
population ‘fitness’ with each new population, or gener-
ation. Most often, this is accomplished through a ‘sur-
vival of the fittest’ reproduction scheme. EA’s are ro-
bust optimizers in that they are highly effective at find-
ing global optima in any search space, including highly
nonlinear search spaces. The robustness of EA’s can
be primarily attributed to the population-type search;
since, in population based searches, solution diversity
can be maintained, allowing the avoidance of local op-
tima.

The two subclasses of EA’s previously mentioned, ge-
netic algorithms (GA’s [1]) and evolutionary strategies
(ES’s [4]), both utilize a coding or parametrization of
solution space to create strings/genomes that are more
amenable to search using evolutionary operators. GA’s
and ES’s mainly differ in their use of binary or real val-
ued coding schemes, crossover or mutation as primary
evolutionary operator, and fitness proportional or rank
based selection methods.

3 EVOLUTIONARY STRATEGY
IMPLEMENTATION

The ES implementation can be described as the fol-
lowing iterative procedure, after starting from a ran-
domly initialized population: (1) generate offspring from
the population using stochastic operators, (2) determine
individual fitness values, (3) select best performing in-

dividuals to survive to next generation, (4) repeat steps
1-3 until termination criteria are met. Briefly, details
required for replication of our ES implementation are
discussed. In particular, the coding scheme, initializa-
tion procedure, stochastic operators, fitness evaluation,
and selection and termination criteria are all elucidated.

3.1 Coding Scheme

The mask-layout, or 2-D shape/polygon, is encoded
as two real valued strings using a polar representation.
For example, a square with vertices with the (x, y) co-
ordinates at the permutations of (+1,+1) has the fol-
lowing two string representation:

angle: 45 135 225 315

s - L 1 1
radius: % B 7
A third string, denoting the proportion of each edge’s
length to the total length, is also added to the encoded
polygon representation. Distances are taken relative to
a starting angle of zero. So, using the above example,
the distance string would be (.125, .375, .625, .875). Fur-
thermore, every shape is normalized to have a perimeter
of length 100.

3.2 Initialization

For a population of size m, individuals are randomly
generated according to the following procedure until the
initial population is filled.

1. Randomly determine the size, or number of ver-
tices, n, of the shape.

2. Choose the number of out-of-order vertices, n,,
randomly from a uniform distribution with range
0 to n/3.

3. For i =1 to n — n,: Randomly generate vertices
by choosing an angle between 0 and 360 and a
positive radius.

4. Sort the existing vertices in ascending angle order.
The current polygon will then be either convex or
star-shaped.

5. For i = 1 to n,: Randomly pick a vertex, v. Ob-
tain a new angle by adding a random Gaussian
variable with zero mean to v’s angle. Insert this
new angle with a randomly generated radius after
.

6. Normalize perimeter to 100 by dividing each ra-
dius by the perimeter, then multiplying by 100.
The distance, or identifying, string is now easily
calculated.

The third step can create out-of-order vertices (i.e., ver-
tices not ordered by angle size). In addition, this step
may create a self-intersecting polygon, leading to an in-
valid mask. Fortunately, these polygons typically have
poor fitnesses and are weeded out during the selection
process. Hence, no measures are taken to enforce non-
self-intersecting polygons.

3.3 Stochastic Operators

Two stochastic operators, which are variations of the
canonical operators mutation and crossover, are used.
Note, however, that crossover is not normally used in
evolutionary strategies, such that our implementation
can be thought of as a hybrid GA/ES.

3.3.1 Mutation

For our application, the canonical mutation operator
suffices. The canonical mutation operator simply modi-
fies every value in the radius and angle strings by adding
a Gaussian random variable with zero mean to each
value. The variance of the random variable is also self-
adapted over time. More detailed descriptions of the
mutation operator can be found in [4].

3.3.2 Crossover

Crossover, as compared to mutation, is a recombina-
tion operator that swaps sections, or building blocks, be-
tween two or more parents. Here, a two parent crossover
is implemented that allows the size, or number of ver-
tices, of the offspring to vary from the parents’ sizes.
The distance string is taken as the identifying string;
so, swaps occur depending on the range of distances
chosen. For example, if the range [.2, .6] is selected, all
distance genes, or values, that are in the range, along
with the respective radii and angles, are swapped be-
tween parents. The importance of using the distance
string is that it only lets compatible sections of poly-
gons to be interchanged between parents. Note that
after both crossover and mutation, each shape needs to
be renormalized in order to maintain consistency of the
coding scheme.

3.4 Fitness

The problem of mask-layout synthesis can be re-
stated as a search in 2-D shape space for the mask that
maps to the device shape most ‘closely’ resembling the
desired device. So, the fitness function should quantify
the similarity between three dimensional shapes. The
approach taken here, though, is to create a fitness func-
tion that quantifies the similarity between 2-D shapes.
A 3-D fitness function can be realized by slicing both
target and test shapes at different depths and summing
the 2-D fitnesses of the resulting contours.

The 2-D fitness function has the following structure.
For each test shape vertex, the closest target shape ver-
tex, [, is found. The distance between these vertices is
added to the fitness value (FV). Penalties are also added
to the FV if the closest target vertices are unordered or
repeated. For example, say that the [’s for the first
three test shape vertices are the third, first, and first
target shape vertices. Penalties would be added for the
unordered and repeated target shape vertices. Thus,
smaller FV’s denote higher similarity between target
and test shapes.

3.5 Selection and Termination Criteria

A (u+) ES selection scheme is used, where p is the
number of individuals in the population and A is the
number of offspring. The ‘+’ denotes that the new pop-
ulation members are selected from the combined pool of
parents and offspring. More specifically, a (20 + 80) se-
lection scheme is implemented, where offspring are gen-
erated from parents through crossover and mutation.
This selection scheme has the property that parents are
never lost if the offspring all perform worse than the par-
ents, a so-called ‘elitist’ property. Elitist selection then
requires that the average population FV be a monotoni-
cally decreasing function of time, or generation number.

The ES terminates if the number of generations ex-
ceeds 500. Results show convergence beyond 500 itera-
tions is poor. However, the ES is allowed to terminate
prior to 500 generations if the population’s average F'V
stays within 0.0001 of the previous generation’s. In both
cases, the highest performing individual is chosen as the
optimal mask-layout.

4 RESULTS

As proof of concept, a 2-D shape matching exper-
iment was completed. The problem can be stated as,
given a desired target shape, find this shape in the space
of all possible 2-D shapes. Results of the experiment are
presented here.

Figures 1-3 show the target shape and best shapes
at different iterations of the experiment. It is appar-
ent that there is good convergence, as the final shape
(shown at the right in Figure 3) is the same as the tar-
get shape (shown at the left in Figure 1). These shapes
were obtained from an initial population whose polygon
sizes ranged between 3 and 53 vertices. Similar conver-
gence is also exhibited for other size ranges; although,
extremely small ranges (i.e., 3 to 6) and extremely large
ranges (i.e., 3 to greater than 500) show poor conver-
gence to the target shape. The likeness of the target
shape can often be distinguished in the best shape after
60-70 generations. Beyond this point, shape improve-
ment is very slight from generation to generation, as
the vertices are perturbed small distances in attempts to

find ‘closer’ matches. These results are not unexpected,
since the behavior of rapid convergence to the global op-
timum’s neighborhood followed by gradual convergence
to the optimum is ubiquitous in evolutionary algorithm
implementations.

At present, the ES implementation has not yet been
interfaced to a bulk-etching simulator. Hence, results of
mask-layout synthesis are not presented here.

Iteration: 1

fp 5

Figure 1: Target shape (left) and best shape at itera-
tion 1 (right).

lteration: 15 lteration: 25

GG

Figure 2: Best shapes at iterations 15 and 25.

Iteration: 65 Iteration: 105

[P |7

Figure 3: Best shapes at iterations 65 and 105.

5 CONCLUSION [3] L1, H., AND ANTONSsON, E. K. Mask-Layout
Synthesis Through an Evolutionary Algorithm. In

An evolutionary strategy has been developed to au- MSM’99, Modeling and Simulation of Microsystems,
tomate the synthesis of mask-layouts with arbitrary num- Semiconductors, Sensors and Actuators (San Juan,
ber of vertices. Results of the 2-D shape matching prob- Puerto Rico, Apr. 1999), IEEE.
lem show that the ES implementation is effective in [4] SCHWEFEL, H.-P. Evolution and Optimum Seeking.
searching 2-D shape space. Furthermore, since 2-D shape John Wiley, New York, 1995.

space is also the solution space of the mask-layout syn-
thesis problem, we expect that the ES implementation,
when interfaced with a bulk-etching simulator, will ex-
hibit good performance in mask-layout synthesis.

6 FUTURE WORK

At the moment, the most pressing concern is to in-
terface our ES implementation to a bulk-etching simula-
tor. A mask-layout synthesis tool can then be developed
and tested to determine its performance and worth. It
is hoped that the approach presented here will be capa-
ble of finding novel layouts that are time consuming to
obtain using the GA approach [2], [3].

Time reductions can also be made by improving the
gradual convergence properties exhibited in the latter
portions of ES runs. Perhaps, a greedy search can be
used. A better idea, though, would be to restart the ES
with individuals in the converged neighborhood. The
reason for this idea lies in the fact that ES’s, when con-
verged to a neighborhood, act approximately as gradi-
ent searches. Consider, for example, an ES that has con-
verged to a neighborhood such that all population mem-
bers are nearly identical. It is apparent that crossover
has little effect on the makeup of new generations. Mu-
tation, on the other hand, has a great effect on the
makeup of new generations, as mutation modifies an
individual by moving it in a random direction. Thus, in
selecting the best parents and offspring to survive, one
is in fact selecting the best direction to move in. This
is exactly the premise of gradient search. The step size
of the search is the variance of the mutation parame-
ter, which, as described previously, is self-adapted from
generation to generation. As the ES converges, this step
size decreases, such that only tiny steps can be made in
the approximate gradient direction, leading to slow con-
vergence to the global optimum. Hence, it would be wise
to restart the ES in the vicinity of the global optimum
while also resetting mutation variance.

REFERENCES

[1] GOLDBERG, D. E. Genetic Algorithms in Search,
Optimization, and Machine Learning. Addison-
Wesley Publishing Company, Inc., New York, 1989.

[2] L1, H., AND ANTONSSON, E. K. Evolutionary
Techniques in MEMS Synthesis. In ASME Inter-
national Mechanical Engineering Congress and Fx-
position (Anaheim, CA, Nov. 1998), ASME.

