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ABSTRACT

     Laser chemical vapor deposition is a free form technique
capable of producing high aspect ratio microstructures of
arbitrary shape. The process does not yet have a high
resolution required for microfabrication. For this study, we
develop a mathematical model that can be used for
predicting the scanning pattern of the laser beam on the
surface of deposit in order to produce a microstructure with
the desired geometry. We demonstrate the applicability of
the model by simulating the deposition of a concave
microlens using nickel on a graphite substrate.

Keywords: Chemical vapor deposition, mathematical
model.

1 INTRODUCTION

     Microtechnology is a critical technology with an
enormous potential for new products and product
enhancement. Current micromanufacturing techniques have
some drawbacks in that the microstructures produced are
planar, somewhat fragile, and not suitable for building
robust three-dimensional structures. For further
development of the technology, it is necessary to develop
new processes suitable for the manufacture of high aspect
ratio microstructures. High aspect ratio microstructures
improve the rigidity of microparts and allow coupling to
them thus enabling the manufacture of complex
mechanisms such as microactuators, and micromotors.
Among the new techniques for free-form production of high
aspect ratio microstructures is laser chemical vapor
deposition (LCVD). The LCVD process is capable of
producing high aspect ratio microstructures of arbitrary
shape and is rapid, flexible, and relatively inexpensive to
operate.  The process does not yet have the high resolution
required for microfabrication. Part of the problem is not
knowing how to scan the surface in order to produce a
microstructure conforming to a desired geometry with
accuracy. To achieve a process with high resolution,
accurate predictive models must be developed for process
control and optimization.

     In this work, we develop a mathematical model for
predicting the scanning pattern of the laser beam on the
surface of deposit in order to produce accurate
microstructures with the desired geometry. Work on
simulating solid deposition using laser chemical vapor has
included solid deposition at a focal spot or direct writing of
lines [1,2,3,4]. The present model is the first attempt at
predicting the laser pixel dwell time on the surface to be
scanned in order to deposit a solid conforming to a pre-
specified geometry.

2 MATHEMATICAL MODEL

     The governing equations which describe the heat flow
through the deposit and substrate are the heat conduction
equations:
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where TD  and TS are the temperatures of the deposit and
substrate, respectively. Qin is the heat source at or within the
deposit boundaries due to absorption of the laser light.
Also, cD, cS, ρD, ρS, KD and KS are the specific heat, mass
densities, and conductivities of the deposit and substrate,
respectively. The interfacial equations between the deposit
and substrate are
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On the surface of the deposit,
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where lossJ  describes the energy loss to the gas phase

at ),(0 yxhz = . Likewise, at the interface between deposit
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     From the Arrhenius equation, one may express the local
growth, z

r∆ , at a point on the surface of deposition during
a time increment ∆t as
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where K0 is a rate constant, TD is the surface temperature,
Ea and R are the activation energy and the universal gas
constant, respectively. Here, ),( yxn

r
 is the unit outward

normal vector on the deposit surface, ),(0 yxhz = ,
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where xö , yö  and zö  are the unit vectors on the x, y, z

coordinates, respectively.
     Equations (1)-(5) are used to predict the scanning pattern
of the laser beam on the surface of the deposit. One may
consider obtaining a microstructure with a pre-specified
geometry by depositing a solid layer by layer.

     Let ),(0 yxhz =  and ),(1 yxhz =  be two

consecutive layers of deposition, where ),(0 yxhz =  and

),(1 yxhz =  are the deposited layer and the next layer to

be deposited, respectively. We wish to determine the laser
beam dwell time at each point on the surface of deposit

),(0 yxhz =  in order to obtain the next surface

),(1 yxhz = .

     We decompose the total region into a number of small

subelements, 
ji,∆ , Mi ,...,1=  and Nj ,...,1= . We

assume that temperatures are the same everywhere in each

subelement 
ji,∆ . Let 

jit ,∆ be the time duration where the

laser beam is focused in subelement 
ji,∆  and let the

t e m p e r a t u r e  a t  s u b e l e m e n t  
qp ,∆  b e

)),(,,( 0, qpqp
D
ji yxhyxT  when the laser beam is focused in

subelement 
ji,∆ . Here, (xp,yq) is the center of 

qp ,∆  , and

we assume that the temperature is at steady state (in this
process, steady state is reached quite rapidly [3]). Thus, the
laser beam dwell time at each subelement can be obtained
by solving the following linear system:
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     In principle, the temperature distribution, TD, on the

surface of ),(0 yxhz =  can be obtained by solving Eqs.

(1)-(4) in the steady state case. For the solution, we ignore
heat loss to the gas phase, and at the interface (z=0), we let
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     The laser light was assumed to have a Gaussian
distribution and to be totally absorbed within the deposit.
Hence, at (x,y)
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where 0P  is the laser intensity, σ  is the standard deviation

of the intensity distribution of the laser beam, and nz
rr

,  is

the inner product of z
r

 and n
r

. Here, Γ (φ) is the angular
spectral reflectance defined by [4]:
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where ni is the deposit index of the refraction and φ is the
local incidence angle.
     Thus, for obtaining the laser beam dwell time at each

point on the surface of ),(0 yxhz =  in order to obtain the

next deposited layer ),(1 yxhz = , one may calculate 
D
jiT ,

in equation (6) from the heat equations. With 
D
jiT ,  and the

distance along the normal vector between the two layers

),(0 yxhz =  and ),(1 yxhz =  known, one can solve

the linear system in (6) to obtain the dwell time st ji ',∆ . A

micro-object with a pre-specified geometry can then be
obtained by repeating the process layer by layer.

3 NUMERICAL EXAMPLE

     We use the model to calculate the dwell times for
manufacturing a concave microlens from nickel deposited
on graphite. Parameters used in the calculation are listed in
Table 1.



     We chose 40 × 40 subelements (or pixels) on the xy-
surface of the substrate. Also, a mesh of 40 × 40 × 40 was
chosen for the substrate. The solution for the temperature
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    [3] N. Arnold and D. Bauerle, ÒSimulation of growth in
pyrolytic laser-CVD of microstructures II. two-dimensional
approachÓ, Microelectronic Engineering, 20, 43-54, 1993.
    [4] J. Maxwell, ÒThree-dimensional laser-induced
pyrolytic modeling, growth rate control, and application to
micro- scale prototypingÓ, Ph.D. Thesis, Rensselaer
Polytechnic Institute, Troy, New York, 1996.

This solution was obtained on a Sun workstation using the
Jacobi iteration method. Eq. (6) was solved for the dwell
times using the Gauss-Seidel iteration method.
     Figure 1 shows a concave microlens resulting from 20
layers of deposition. Figure 2 presents the total
corresponding dwell times for 20 layers. As expected, dwell
times agree with the deposit shape in Figure 1.

Parameter             Value

aE )/(104.9 4 molJ↔
R )/(314.8 KmolJ ?

0K sec)/(1037.1 4 mm↔

DK )/(1055.6 2 KmmW ?↔ −

SK )/(107.1 3 KmmW ?↔ −

×T )(475 K

0P )(10.0 W
σ )(0005.0 mm

in 95.3

Table 1. Values for parameters used in the
numerical example

Figure 3 presents the change in the maximum and minimum
temperatures at the surface with layers of deposit. It is seen
that the temperature decreases with an increase in the
number of layers or thickness of the deposit. This is as
expected since nickel has a higher heat conductivity than
graphite. This result indicates that as the thickness of the
deposit increases the surface temperature decreases to the
point where no growth may be possible. As such, it may
become necessary to increase the laser intensity with an
increase in the number of layers or deposit thickness.
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    Figure 1: A concave microlens resulting from 20
layers of deposit. The height of the microlens is 1 micron at

    the center and 3 microns at the edge.

  Figure 2: Total dwell time for each pixel on the x-
   y surface that corresponds to the concave microlens in
   Figure 1.

     Figure 3: Change in the maximum and minimum surface
  temperatures over layers.
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