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ABSTRACT

A novel and practical method is developed to resolve
the three dimensional PoissonÕs and LaplaceÕs equation at
the center axis in cylindrical coordinates.  The method
employs the rectangular xyz co-ordinates to solve the
potential φ along the center axis.  The new approach is
tested by comparing the potential distribution of a biased
cylindrical duct simulated by two dimensional lÕHospital
rule.  The capability of the method to model non-symmetry
field structure is verified by simulating the potential
distribution inside the cylindrical duct with only a three
quarter of the wall biased with a positive voltage.

Keywords: PoissonÕs equation, center axis, numerical
iteration, cylindrical co-ordinate, non-symmetry field.

1 INTRODUCTION

Plasma immersion ion implantation (PIII) has attracted
the attention of materials scientists, physicists, and
engineers as an alternative surface modification technique
[1].  It emulates conventional beam-line ion implantation in
that the implantation time is independent of the sample size
and large industrial components of an irregular shape can
be treated relatively easily due to its non-line-of-sight
characteristic [2-4].  However, owing to the complex nature
of a plasma and the plasma-sample interactions, the
processing conditions for different types of samples are
different and sometimes difficult to identify.  An empirical
approach is the most straightforward but can be tedious and
time consuming.  Theoretical simulation eliminates the
guesswork and when conducted iteratively with
experiments, can pinpoint the correct plasma and
processing conditions much more efficiently [5].

PIII can be classified as an electrostatic process as the
pulsing frequency is not fast enough to create
electromagnetic radiation.  The potential φ in the volume of
the chamber can be described by PoissonÕs equation:

oερφ /2 −= , where ρ is the charge density and oε  is

the dielectric constant.  The equation can be solved by the
finite difference method.  To simulate implantation into a
three-dimensional structure such as a commercial gear like
a bearing or bore, we choose to work in cylindrical

coordinates.  When working in cylindrical coordinates,
attention must be paid to the center axis r = 0, since
PoissonÕs equation is undefined:
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In this article, we present a new and practical approach
to approximate the potential by using rectangular
coordinates at the center axis.  We test the method by
simulating the potential distribution inside a cylindrical
duct using a grounded plate, i.e., zero potential covers one
end of the duct and 50 volts are applied to the wall of the
duct.  The other end of the duct is connected to the
grounded cylindrical chamber.  The accuracy of the new
method is assessed by comparing the potential distribution
to 2D simulation.  In two-dimensional (r-z) coordinates, the
center axis can be solved by lÕHospitalÕs rule.  The potential
distribution generated by a non-symmetrical field will be
presented.

2 MODELING AND SIMULATION
RESULTS

We use an empty cylindrical duct without any plasma,
i.e., ρ = 0.0, to test the 3D simulation at the center axis (r =
0) of the cylindrical coordinate of the method.  Without any
space charges, PoissonÕs equation becomes LaplaceÕs
equation.  The radius of the duct is 0.2 meter and the length
is 0.5 meter.  A grounded plate with zero potential covers
one end of the duct.  A voltage of 50V is applied to the wall
of the hole.  The other end of the duct is connected to a
grounded cylindrical chamber.  The length of the chamber
is 0.5 meter and radius is 0.4 meter.

The potential inside the duct and chamber can be
simulated by solving the 2D LaplaceÕs equation since the
geometry has a cylindrical symmetry [5,6].  Therefore, the
3D method can be verified.

2.1 2D lÕHospitalÕs Rule Approach

In 2D geometry, LaplaceÕs equation is of the form,
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At the center axis r = 0, we can use lÕHospitalÕs rule [6] and
LaplaceÕs equation becomes,
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We can write down the finite difference approximation of
Eq. (3) as,
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The potential is obtained by an iterative method [6].  The
potential contour line of the cross section cylindrical duct is
shown in Fig. 1.  We use a relative error of < 1.0x10-4 to
obtain the plot [6].  It is observed that the first derivative of

the potential, rƒƒφ  along the center axis is zero, and the

potential radically decrease outward into the chamber as
shown in Fig. 1.
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Fig. 1: Potential contour line of the cross section of the
cylindrical duct with the potential at the center axis solved

by lÕHospitalÕs rule.

2.2 3D Rectangular Approach

In 3D geometry, LaplaceÕs equation in cylindrical
coordinates is written as,
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At r = 0, we can use LaplaceÕs equation in xyz coordinates
instead,
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The finite difference approximation of Eq. (6) becomes,
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In xyz coordinates, we need to insert four adjacent points /
nodes of potential into Eq. (7) to derive the potential at the

center axis along the x-y (r-θ) plane, i.e., kji ,,1−φ , kji ,,1+φ ,

kji ,1, +φ , and kji ,1, −φ .  At the same time, LaplaceÕs equation

of the rest of the plane is solved in cylindrical coordinates
by Eq. (5).  The center point is surrounded by a circle of
points depending on ∆θ, for example, 72 points for ∆θ = 5°.
Hence, 72/4 = 18 sets of points can be chosen in Eq. (7), for

example ,  
zrkji ,0,,,1 =− = θφφ ,  

zrkji ,180,,,1 =+ = θφφ ,

zrkji ,90,,1, =+ = θφφ ,  
zrkji ,270,,1, =− = θφφ  w i t h

ryx ∆=∆=∆ .  To take into equal weight among all sets

of points, an average is made.  The potential is also
obtained by an iterative method [6].  The potential contour
line of the cylindrical duct cross section is shown in Fig. 2.
In this iteration, we use a lower upper relative error
boundary of < 5.0x10-5.  The potential contour line profile
is more or less the same as in Fig. 1.  The rectangular
coordinates treatment at the center axis is thus acceptable.
The accuracy can be improved by further lowering the
upper relative error boundary.
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Fig. 2: Potential contour line of the cross section of the
cylindrical duct with the potential at the center axis solved

by the 3D xyz approach.

2.3 Asymmetrical Potential Field Structure

The xyz method is applied to generate the asymmetrical
potential field structure.  A quarter of the duct wall from 0¼
to 90¼ degree is set to 0V, while the rest of the duct wall is
biased to 50V.  The potential contour line of the cross
section of the asymmetrical field duct along the (r-z) plane
is depicted in Fig. 3a.  The plane is oriented at θ  =
45°/225°.  The potential contour lines increase smoothly
from the duct wall with 0V to the wall biased at 50V.
There is no discontinuity along the center axis.  The
potential contour line of the cross section along the (r-θ)/(x-
y) plane is displayed in Fig. 3b.  The saw-tooth structure at
the circular boundary of the duct wall is due to a deficiency
in the plotting program.  The plotting pixel is rectangular.
The plane is chosen at half-height of the duct.  It is also
observed that the potential extends smoothly from the right
hand corner with 0V to the rest of the plane through the
center axis.  It shows that the xyz treatment can accurately
and successfully simulate the potential distribution at the
center axis.
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Fig. 3a: Potential contour line of the cross section of the
non-symmetry field cylindrical duct along the (r-z) plane

with the plane oriented at θ = 45°/225°.
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Figure 3b: the potential contour line of the cross section of
the non-symmetry field cylindrical duct along the (r-θ)/(x-

y) plane is plotted.  The plane is chosen at half-height of the
duct.  The saw-tooth structure at the circular boundary of

the duct wall is due to the de-efficient of the plotting
program.

3 CONCLUSION

We have developed a novel method to solve the 3D
PoissonÕs and LaplaceÕs equations at the center axis in
cylindrical coordinates.  The novel method treats the center
axis by rectangular xyz coordinates and averages the
surrounding set of points to estimate the center potential.



The accuracy of the method is assessed by comparing the
potential contour lines of a biased cylindrical duct with the
potential contour lines solved by the 2D lÕHospital rules.
The capability of the novel method to model asymmetrical
field distribution is also verified.  A quarter of the duct wall
is set different from the rest of the wall generating a
asymmetrical potential distribution inside the duct space.
The method is shown to successfully simulate the
asymmetrical potential field strength inside the cylindrical
duct and can be applied to simulate plasma immersion ion
implantation into industrial bearings [4].
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