
Hardware Realization of Biological Mechanisms Using VHDL and FPGAs

*N. Botros, M. Akaaboune, J. Alghazo, and M. Alhreish

Southern Illinois University at Carbondale
Department of Electrical Engineering

Carbondale, IL 62901
*e-mail: botrosn@siu.edu

ABSTRACT

In this paper we present a hardware realization of a
simplified blood-pressure regulation mechanism. The
mechanism has been proposed and then modeled by using
Hardware Description Language (VHDL). After verifying
the simulation results, Computer Aided Design (CAD) tools
are implemented to download the simulation into a Xilinx
FPGAs chip. The chip has been tested by comparing the
behavior of the signals on its pins representing the blood
pressure and other parameters of the mechanism with that
of the proposed mechanism. Our results show that the chip
mimics the mechanism.

Keywords: VHDL, FPGAs, System on a chip, Biological
mechanisms, Modeling and simulation.

1. INTRODUCTION

To understand the function and/or malfunction of
biological mechanisms and to develop a drug to treat the
malfunction, researchers need to perform a thorough
investigation of the mechanism. Due to ethical constraints,
medical experiments on humans or animals are not allowed
or extremely limited. The ultimate goal of this paper is to
realize (build on an Integrated electronic chips) biological
mechanisms such as the excretion system (kidney),
Molecular Transcription (genetics), or cellular pathways.
After realization, the hardware (the chip) will mimic the
function of the realized mechanism. The chip will offer a
unique opportunity for researchers to explore the function
of the mechanism and the effect of external agents such as
drugs, hormones, or chemical transmitters..

The realization is done through implementation of
Computer Aided Design (CAD) tools including Hardware
Descriptive Language (VHDL) to download the design of
the hardware into Xilinx, or compatible Field
Programmable Arrays (FPGAs) chips. VHDL is an
extremely powerful tool that is used to model and realize
complex systems [2]-[5]. VHDL has gone through a
tremendous development and upgrading, it offers a unique
tool to model complex systems through knowledge of the
system behavior, [3]. By specifying the behavior of the
output of the system with the change of its inputs, VHDL
tools can

model the system and convert it to Integrated Circuit (ICs)
blocks. The model can be displayed and tested on the
screen of a computer, and if it satisfies the requirement of
the user, it can be downloaded into a Field Programmable
Gate Arrays (FPGAs) chip. The FPGAs is a chip
manufactured with a modern solid state technology that
allows a huge number of Integrated Circuits to be packed
in a small area. The nowadays FPGAs can contain in a
single chip more than 300 blocks that can be programmed
to be combinational circuits (adders, subtractors,
decoders,..) or sequential circuits (flip-flops, counters,
memories,..)

The chip after realization mimics the selected
biological mechanism. Values of the input signals or
parameters of the mechanism such as blood pressure, Na+

concentration, or affinity of binding are applied to user-
selected pins on the chip. These values can be in digital
form (discrete) or analog (continuous) form; an Analog-to-
Digital converter (A/D) should be used if the input is in
analog form. The output of the mechanism can be viewed
at the user-selected output pins of the chip; the view can be
in digital form or analog form by using a Digital-to-Analog
(D/A) converter.

At present time there is an emerging technology,[1]
close to the one proposed here. In this technology, the
mechanisms are only software-simulated on the screen of
the computer. In comparison with the software-simulation,
the hardware realization proposed here has the following
advantages: a) the chip, once is realized, is a stand-alone
electronic circuit that does not need a host computer for
operation, b)the chip is compact (1"x1"x.1" without socket
and 1"x1"x.7" with socket) , c) the chip has an average cost
of less than $30, d) The chip can be easily interfaced to:
external signals or stimuli, external devices, or another chip
through the input/output pins, e)the downloaded design can
be easily modified by just changing the VHDL-program
and re-downloading, f) the chip, because it is dedicated
hardware without a host computer, can operate in real-time
applications where a higher speed of operation is needed.

2. THE MECHANISM

To investigate the feasibility of our modeling technique,
we consider a simplified version of the blood-pressure
regulation mechanism done by the kidney. The mechanism

is described as follows: if the blood pressure (BP)
decreases, the activity of the sympathetic neural (SN)
system increases, the renal blood flow (RF) decreases, the
sodium excretion (Na+) decreases which leads to an
increase (stabilization) in the blood pressure.

3. VHDL MODELING

We implement VHDL-behavior modeling to describe
our mechanism. A flow chart of this description is shown
in Figure 1. To express the inverse relationship between

the activity of the Sympathetic Neural (SN) system and the
blood pressure, we implement a simple formula SN = K1-
BP where K1 is a constant. We do the same to express the
inverse relationship between the Renal Flow (RF) and SN.
For the relationship between the sodium excretion (Na+)and
RF, we use the formula Na+ = 2 RF. The threshold value
(the normal physiological value) of the blood pressure is
assumed to be 17 units, for Na+ is 14, and for RF is 14. A
portion of the VHDL source code for the mechanism is
shown below.

 N

 Y

 Figure 1. A Flow chart of modeling of the mechanism

Read
Blood
Pressure

Calculate
SN =K1-BP
RF =K2-SN
Na+ = 2RF

Na+ =
Threshold?

Update Blood
Pressure

The output of the VHDL simulation is shown in Figure 2.
As shown in this Figure if the BP decreases, the Na+

decreases and stabilizes the blood pressure.

4. HARDWARE REALIZATION

After verifying the simulation, we downloaded the
simulation on a Xilinx FPGAs XC4005 chip using Xilinx
CAD tools. The signals representing the BP, SN, RF, and
Na+ were assigned to selected pins of the chip. These
signals behaved similarly to the simulation results shown
in Figure 2.

The VHDL Program
library ieee;
use ieee.std logic 1164.all;
--In this entity, there are all the parameters that
--the program needs, especially the initial value
--of the blood pressure which is BP1, and for the
--adjusted values of the blood pressure is bp
entity BLOOD is
port (clk: in std_logic; bp1: in std_logic_vector(5 downto
0); bp: buffer std_logic_vector(5 downto 0); sn: buffer
std_logic_vector(5 downto 0); rf: buffer
std_logic_vector(50 downto 0); na: buffer
std_logic_vector(5 downto 0)) ;
end BLOOD;
architecture BH of BLOOD is
-- A procedure convert from binary to integer--
--procedure bin2i (bin: in std_logic_vector; int:out
--integer) is
--Another procedure to convert from integer to binary
--procedure int2b (int : in integer; bin: out
--std_logic_vector) is
-- Relation between BP and SN which is inversely
--proportional
function pro (y: std logic vector) return std_logic_vector
is
constant k: integer:=17; constant XO: integer:=14; variable
rst, i : integer; variable j: std_logic_vector (5 downto 0) ;
begin
bin2i (y, i) ; rst:= (k+x0)-i; int2b (rst, j); return j; end pro;
-- A function that represent the relation between SN and
RF --which is inversely proportional.
function prop (y: std_logic_vector) return std_logic_
vector is
-- Relation between RF and NA Ò proportionalÓ
function prom (y: std_logic_vector) return
std_logic_vector is
constant k : integer :=15; constant XO: integer:=14;
variable rst, i :integer; variable j: std_logic_vector (5
downto 0);

begin
bin2i (y, i); rst:= 2*(x0+k)-2*i; int2b(rst,j);
return j; end prom;
-- Function to increment BP
function incr (y: std_logic_vector) return std_logic_vector
is
variable rft, w: integer; variable x: std_logic_vector(5
downto 0);
begin
bin2i (y,w); rft:= w + 1; int2b(rft, x); return x;
end incr;
-- Another function that decrement BP
function decr(y:std_logic_vector) return std_logic_vector
is
-- The main program.
begin
process (clk)
constant bp0: std_logic_vector:=Ó010001Ó;
constant sn0: std_logic_vector:=Ó001110Ó;
constant rf0: std_logic_vector:=Ó001110Ó;
constant na0: std_logic_vector:=Ó011100Ó;
variable i,j: boolean; variable bpt:std_logic_vector (5
downto 0);
begin
bpt:=bp1;
if clk=Õ1Õ then
if bpt=bp0 then bp<=bp0; sn<=sn0; rf<=rf0;na<=na0;
end if;
elsif bpt<bp0 then bp<=incr(bpt); sn<=pro(bp);
rf<=prop(sn); na<=prom(sn); bpt:=bp;
if bp=bp0 then i:=true; esle i:=false; end if;
if na<na0 then if i=false then bp<=incr(bp); end if;
if bp=bp0 then sn<=sn0; rf<=rf0; na<=na0;bp<=bp0;
end if;end if;
elsif bpt>bp0 then bp<=decr(bpt); sn<=pro(bp);
rf<=prop(sn); na<=prom(sn); bpt:=bp;
if bp=bp0 then j:=true; else j:=false; end if;

if na>na0 then if j=false then
bp<=decr(bp); end if; if bp=bp0 then sn<=sn0; rf<=rf0;
na<=na0;bp<=bp0; end if;

end if; end if;
end process;
end BH;

5. REFERENCES

[1] SimBioSys Physiology Labs, www.critcon.com, 1999.

[2] T. Riesgo, Y. Torroja, and E. de la Torre, "Design
Methodologies Based on Hardware Description
Languages," IEEE Transactions on Industrial Electronics,
vol. 46, no. 1, pp. 3-12, 1999.

[3]Moore, J. and Botros, N., "Design and Implementation
of an Expandable Hopfield Neural Network Using VHDL
Structural Modeling," International Journal of Robotics
and Automation, vol.. 12, Issue 1, pp. 33-37, 1997.

[4] Y. Alquesi, and N. Botros, "A Floating-Point FFT
Processor Using Field Programmable Gate Arrays,"

[5] N. Botros, and M. Abdul-Aziz, M., "Hardware
Implementation of an Artificial Neural Network Using
Field Programmable Gate Arrays (FPGAs)," IEEE
Transactions on Industrial Electronics, vol. 41, no. 6, pp.
665-667, 1994.

International Journal of Computers and Their
Applications, vol. 3, no. 2, pp. 92-99, 1996.

 2 0 0 ns 4 0 0 ns 6 0 0 ns 8 0 0 ns 1 us

clk ÔUÕ

 pb1 23

pb 22 21 20 19 18 17

sn 9 10 11 12 13 14

 rf 20 19 18 17 14

na 40 38 36 34 28

Figure 2. Simulation Results (redrawn from the VHDL screen)

