A Synthesizable Low Power VHDL Model of the Exact Solution of Three
Dimensional Hyperbolic Positioning System

Ralph Bucher and D. Misra
New Jersey Center for Wireless and Telecommunication
Department of Electrical and Computer Engineering
New Jersey Institute of Technology

ABSTRACT

This paper presents a synthesizable low power VHDL
model of a three-dimensional hyperbolic positioning
system algorithm. The algorithm derives the equations
needed to obtain an exact solution for the three dimensional
location of a mobile given the locations of four fixed
stations (like a GPS satellite or a base station in a cell) and
the signal time of arrival (TOA) from the mobile to each
station. =~ The VHDL model of the algorithm was
implemented and tested using the IEEE numeric std
package. The model can be easily synthesized for
hardware implementation.

1. INTRODUCTION

Many organizations are developing competing products
to comply with the FCC's E-911 mandate which requires
U.S. cellular carriers to provide location information of
phone calls, effective October 2001. The accuracy required
is 100 meters or better. Many of these products will
implement the well known time difference of arrival
(TDOA) technique for locating a mobile with varying
degrees of accuracy. Methods for calculating the TDOA
and mobile position have been reviewed previously [1][2].
Some methods calculate the two dimensional position and
others the three dimensional position depending on the
degree of simplicity desired. In this paper, a more general
set of equations needed to locate the three dimensional
position of a mobile is presented. These equations will be
the basis for implementing a positioning algorithm in C++
and VHDL. The VHDL version will utilize the IEEE
numeric_std package so it can be synthesized into an ASIC
by anyone seeking a hardware implementation.

2. THE ALGORITHM

The essence of the TDOA technique is the equation for
the distance between two points.

d=y(x,=x) +(y, =) +(z, -z,)} (1)

The distance between a mobile and a station is
determined indirectly by measuring the time it takes for a
signal to reach the station from the mobile. Multiplying the
TOA ¢ by the signal velocity ¢ gives us the distance d.

From now on, R will be used to represent the distance d
since it is the more commonly used notation in TDOA
literature.

We need to solve for the three unknowns x, y and z
(mobile position). Therefore, equation (1) is expanded to
four equations when the specific locations of four satellites
i, j, k, and [are given. This requirement can be easily met
since GPS satellites broadcast their exact locations and at
least four satellites are guaranteed to be in the horizon of
any location on earth. The satellites also broadcast the
times they are at their respective locations so that the signal
TOAs can be determined. Even though only three
equations are needed to solve for three unknowns, adding a
fourth equation greatly simplifies the solutions for x, y, and
Z.

ct, =R =/(x,—x) +(y,—y) +(z, - 2))
ct, =R, = (x,—x) +(y,—y) +(z,~2)’ 3)
ct, =R, =/(x, =x)* +(y, =)’ +(z, —2)’ (4)
ct, = R, =[x, =x) +(, — »)’ +(z, — 2)} 5)

Solving the above four equations for the three unknowns
results in the following set of equations:

x=Gz+H @)
y=1Iz+J (®)
M =4R[G*+1*+1]- ©)
N =8R.[G(x,—H)+1(y,—J)+z]+2LK (10)
O=4R:[(x,—-H) +(y,-J) +z}]-K* a1

E-B

G=£=2 12
1-D (12)

y=-r-¢ (13)
A-D

I=AG+B (14)

J=AH +C (15)

K=R. +x! —x;+y—yl+z —z; +2x,H+2y,J (16)

L=2[x,G+y,l+2z,] (17)
Rik‘x i Ri'xki

A= (s)
Rgfyki - Rik Vi
RikZ i Ri'Zki

B= [T (19)
R[/y ki Riky ji

C={R,[R +x/—x+y -y +z/ -2z]- 20)
R,,[ij +xi2 _xlf +y[2 _yZ +Z[2 —Zi]}/Z[R[/y,ﬁ. _R[kyji]

D= [Rklxjk _Rk/’xlk] (21)
Rk/ylk _Rklyjk

Rklzjk - Rk/’zlk

E=[2+£ "% (22)
Rk/ylk - Rklyjk

F={Rk,[RZ/+xk2—x‘f.+yZ —yjz.-i-zkz—zf]—

(23)
Rkj[lel +xlf _xlz +y/f _ylz +ZZ _le]}/z[ng'ylk _Rklyjk]

3. VHDL MODEL

The equations for the x, y and z position of the mobile
was modeled in VHDL. The numeric_std package was
used to construct the model, which was readily synthesized
into a low power digital circuit. The input signals are the x,
y, z positions of four GPS satellites, 4, j, k, [are in meters,
and the signal TOAs from the individual satellites to the
mobile are in nanoseconds. The input signal assignments
are xi, yi, zi, ti, xj, yj, zj, tj, xk, yk, zk, tk, xI, yl, zI and tl.

GPS satellite altitudes are approximately 10,900 nautical
miles (20,186,800 meters). Therefore, the TOA range is
roughly 6,700,000 to 7,600,000 ns. This means the input
signals can be adequately described by a 32-bit vector. In
order to perform signed arithmetic operations, the input
signal assignments are of type SIGNED. The binary
representation for negative numbers is 2's complement.

The TDOAs are converted to distances by multiplying
them by the binary representation of 100,000, and then
dividing the results by the binary representation of 333,564
ns/m.

Since all signal and variable assignments are vectors
representing integers, a method for maintaining adequate
precision in divide and square root operations is needed.
This will be achieved by multiplying the numerator by the
binary representation of 1.0 x 10" in divide operations.
This method is preferred to using decimal point notation to
decrease the complexity of the model. However, the length
of the wvectors increase for successive multiplication
operations, leading to a 200-bit vector for the interim value
0.

The numeric std package does not contain an
overloaded square root operator. Therefore, Dijkstra's
bisection algorithm is used to compute the integer square
root of a positive integer represented by a 64-bit vector. 64
bits is deemed adequate since the position z and the square
root term cannot be larger than 32 bits by definition.

The square root operation gives two values for z, so the
output signals z/, z2, xI, x2, yl, y2 are for two possible
mobile positions. The z value representing the mobile
position can be determined by using a fifth satellite, or
checking if the value is in the horizon of the four satellites
relative to earth.

The VHDL model for computing x, y, z position of
mobile given four satellite positions and TOAs from
satellites to mobile is:

library icee;
use ieee.std logic 1164.all;
use ieee.numeric_std.all;

entity hyperbolic is
port(xi,xj,xk,x1,yi,yj,yk,yl,zi,zj,zk,zLti,tk,tj,tl: in
SIGNED(31 downto 0);

x1,x2,y1,y2,z1,z2: out SIGNED(31 downto 0));
end hyperbolic;

architecture behave of hyperbolic is

signal o: SIGNED(199 downto 0);

signal n: SIGNED(195 downto 0);

signal m: SIGNED(191 downto 0);

signal c,f,l: SIGNED(95 downto 0);

signal s12,516,521,522,524: SIGNED(131 downto 0);

signal s9,s11,s13,515,s23 k: SIGNED(99 downto 0);

signal s1,s2,s3,s4,s5,56,57,58,5s10,514,517,518,519,520,
$26,527,529,s30, a,b,d,e,g,h,i,j,yi2,yj2,yk2,yl12,
xi2,xj2,xk2,x12,712,7j2,7zk2,712, rij2,rik2,rki2,rkj2
: SIGNED(63 downto 0);

signal rij,rik,rkj,rkl,xji,xki,xjkx1k,yji,yki,yjk,ylk,zji,zki,
zjk,zlk, light,thou,root,s28,s31,s32,533,534,535,s36
: SIGNED(31 downto 0);

signal one e 10: SIGNED(35 downto 0):=
"001001010100000010111110010000000000";

begin

light<=to_signed(333564,32);
thou<=to_signed(100000,32);

sl <=abs(thou*(ti-tj));
rij<=resize(s5,32);
s2<=abs(thou*(ti-tk));
rik<=resize(s6,32);
s3<=abs(thou*(tk-tl));
rkl<=resize(s7,32);
s4<=abs(thou*(tk-tj));
rkj<=resize(s8,32);

s5<=sl/light;
rij2<=rij*rij;
s6<=s2/light;
rik2<=rik*rik;
s7<=s3/light;
rkl2<=rkl*rkl;
s8<=s4/light;
rkj2<=rkj*rkj;

Xji<=xj-xi; yji<=yj-yi; zji<=zj-zi;
yi2<=yi*yi; X12<=x1*X1; z12<=zi*zi;
xki<=xk-xi; yki<=yk-yi; zki<=zk-zi;
YI2<=yj*yj; Xj2<=Xj*Xj; 7)2<=2*zj;
xlk<=xl1-xk; ylk<=yl-yk; zlk<=zl-zk;
yk2<=yk*yk; xk2<=xk*xk; zk2<=zk*zk;
xjk<=xj-xk; yik<=yj-yk; zjk<=zj-7k;
yl2<=yl*yl; x12<=xI*xl; z12<=zl*zl;

89 <=one_e_10*(rik*xji-rij*xki);
s10<=rij*yki-rik*yji;

sl1<=one e 10*(rik*zji-rij*zki);
sl3<=one e 10*(rkl*xjk-rkj*xlk);
sl4<=rkj*ylk-rkl*yjk;

s15<=one e 10*(rkl*zjk-rkj*zlk);
s17<=rij2+xi2-xj2+yi2-yj2+zi2-zj2;
18<=rik2+xi2-xk2+yi2-yk2+zi2-zk2;
s19<=rkj2+xk2-xj2+yk2-yj2+7zk2-7j2;
s20<=rkl2+xk2-x12+yk2-yl2+zk2-z12;
sl2<=one e 10*(rik*s17-rij*s18);
sl6<=one e 10*(rkl*s19-rkj*s20);
s21<=SHIFT RIGHT(s12,1);
$22<=SHIFT RIGHT(s16,1);

a<=resize(s9/510,64); b<=resize(s11/s10,64);
c<=resize(s21/s10,96); d<=resize(s13/s14,64);
e<=resize(s15/s14,64); f<=resize(s22/514,96);

s23<=one_e 10*(e-b); s24<=one_ec_10*(f-c);
g<=resize(s23/(a-d),064); h<=resize(s24/(a-d),64);
i<=resize(((a*g)/one_e 10)+b,64);
j<=resize(((a*h)/one_e 10)+c,64);

k<=s18*one e 10+SHIFT LEFT(j*yki,l)
+SHIFT LEFT(h*xki,1);

I<=SHIFT_ LEFT(g*xki+i*yki+zki*one e 10,1);

m<=SHIFT LEFT(rik2*(g*g+i*i+one_e 10*one e 10),2)
-1*1;

s26<=resize(one_e 10*xi-h,64);

27<=resize(one_e 10*yi-j,64);

n<=SHIFT LEFT(rik2*(g*s26+
i*s27+zi*one e 10%one e 10),3)+SHIFT LEFT(I*k,1);

0o<=SHIFT LEFT(rik2*(s26*s26+
s27*s27+zi*zi*one e 10*one e 10),2)-k*k;

s28<=resize(SHIFT_RIGHT(n/m,1),32);
s29<=resize(0/m,64);
$30<=s28*528-S29;

squareroot:process (s30)
variable q,r,s,t:signed(63 downto 0);
begin
q:=s30;
s:=to_signed(0,64);
ri=to_signed(0,64);
t:="0100000000000000000000000000000000000
000000000000000000000000000";
forjin 1 to 32 loop

SI=r+t;

if s<=q then
q:=q-s;
r:=stt;

end if}

ri=shift right(r,1);

t:=shift right(t,2);

end loop;

root<=resize(r,32);
end process squareroot;

$31<=S28+root; z1<=s31;
s32<=resize((g*s31+h)/one e 10,32); x1<=s32;
s33<=resize((a*s32+b*s31+c)/one_e 10,32);y1<=s33;
$34<=s28-root; 22<=s34;
s35<=resize((g*s34+h)/one e 10,32); Xx2<=s35;
s36<=resize((a*s35+b*s34+c)/one_e 10,32);y2<=S36;

end behave;

4. TESTING THE MODEL

Accolade's demonstration edition of PeakVHDL was
used to compile the model and run simulations. The model
was also compiled and synthesized with Mentor Graphics'
AUTOLOGIC II (low power mode). A high level
schematic was generated using AUTOLOGIC's default
component library.

A VHDL test bench representing the real life situation in
Fig. 1 was used to validate the model. The known position
of a mobile was used to determine the input test data for #,
tj, tk and tl. The test data for the satellite positions xi, i,
zi, xj, yJ, zj, xk, yk, zk, xI, yl and zl are realistic numbers.

The test bench (not shown) converted the base 10
numbers in Fig. 1 to binary numbers and outputted the x,y
and z position of the mobile in binary and base 10 format.

Satellite 1
86320708 ns to mobile
(-15102069,21482049,3683495)

©»n o= X

Satellite k
67335895 ns @mobile
(15338349, 15338349, 1533%349)

mobile
(3683495,3683495,3683495)

Satellite j
75293013 ns to mobile
(0,6380000,25789348)

sl Satellite 1
(0,0,0) y and z axis ateflite .
Earth | "% 78283279 ns to mobile
(26566800,0,0)
(x,y,z) position in meters
from the center of the earth
Figure 1
A C++ program using real numbers was used as a 5. RESULTS DISCUSSION

benchmark for the accuracy and precision of the VHDL
model.
The VHDL simulator displayed the following results:

OUTPUT SIGNAL VALUE
INT X1 3683494
INT Y1 3683495
INT Z1 3682495
X1 00000000001110000011010010100110
Y1 00000000001110000011010010100111
71 00000000001110000011010010100111
Table 1

The C++ program generated the following results:

OUTPUT SIGNAL VALUE
X1 3683494
Y1 3683495
Z1 3683495
Table 2

The C++ program and VHDL model produced the same
results. This means the VHDL model can produce the
coordinates as accurate as a GPS positioning system
utilizing a general purpose microprocessor with a 32-bit
IEEE floating point ALU.

The x position was off by one meter for this set of test
data. Another set of test data not shown here produced a
coordinate which was off by 36 meters due to the satellites
being positioned closer to one another. However, this can
be corrected by extending the precision beyond the ten
decimal points used in the model.

REFERENCES

[1] B.T. Fang, "Simple solutions for a hyperbolic and
related position fixes", IEEE Trans. on Aerosp. and Elect.
Systems, vol. 26, no. 5, pp. 748-753, Sept 1990.

[2] K.J. Krizman, T.E. Biedka, and T.S. Rappaport,
"Wireless position location: fundamentals, implementation
strategies, and sources of error", invited paper.

