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ABSTRACT

Automatic Differentiation (AD), based on the
nonstandard analysis theory, is a new technique in
computer numerical analysis. An AD based algorithm for
device model parameter extraction is presented. Using this
algorithm, the constrained parameter extraction for a
surface potential based MOSFET drain current model was
done, and the average relative error between calculated and
measured current is less than 2%.
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1 INTRODUCE

Semiconductor device modeling and parameter
extraction is one of key works in Electronic Design
Automatic (EDA) area. The device models used in EDA
usually have analytic expression for acceptable
computational efficiency. When the device dimensions are
scaled down to submicrometer regime, it is impossible to
establish analytic model strictly based on device physics,
therefor, some empirical parameters are introduced to
describe narrow and short channel effects. These empirical
parameters often have ambiguous physical meanings, and is
difficult to extracted by experiment method. So they have
to be extracted by optimization methods.

In general, for a problem that can be describe by
analytic expression (e.g., the device model parameter
extraction), the differentiation-dependent methods are more
effective than some nonnumerical optimization methods
such as genetic algorithms. However, the objective
functions in practice are complex, and the analytic
expressions of their gradients are rather cumbersome, to say
nothing of their Hessian. In convention, it is implemented
by numerical differentiation. This brings errors inevitably,
and will affect the convergence of optimization.

Automatic Differentiation (AD) is a promising method
in the field of computer numerical analysis. It is based on
the nonstandard analysis and pronumber algebra, which has
the distinctive properties that transforms the differentiation
to arithmetic operation [1]. Using AD, the gradient and
Hessian matrix of the objective function can be accurately
obtained without derivation. In this paper, an algorithm
base on AD technology for constrained optimization in

device model parameter extraction is presented. Using this
algorithm, the constrained parameter extraction for a
surface potential based MOSFET drain current model was
done, and encouraging result is obtained.

2 PRINCIPLES OF AD

For any smooth function, RRf v ♦: , we can define its

ÒprolongationÓ as

Lfffff = ,,,ö (1)

where the first member of fö is the function itself, the

second is its gradient f , the third is its Hessian f ,

and so forth. Let x  be a point in vR  space. Evaluating a

prolongation at this point yields a so-called ÒpronumberÓ

( ) ( ) ( ) ( ) ( ) LL ,,,,,,,öö aaaxfxfxfxfxfa === (2)

We can define some operations on the prolongation as
real numbers, under the rule that the corresponding
operations of the smooth function and its derivatives are
correct. Let the symbol ⊗  represent a kind of binary
arithmetic operator of smooth functions, such as addition
and multiplication, then the operation of prolongation
should be defined as

( ) ( )L,,,ööö gfgfgfgfgf == (3)

Correspondingly, we can define the arithmetic operations
on the pronumbers. It is proved that pronumbers and their
operations follow the commutative law, associative law and
distributive law as real numbers. In practice, the pronumber
algebra must be truncated to finite order. In the truncated
algebra, operations as above can also be defined and they
follow the three laws as well.

There are ÒzeroÓ and ÒunitÓ in this algebra:

L,0,0,00ö =           L,0,0,11ö = (4)

Any real r can be mapped into this algebra as

L,0,0,ö rr = (5)



Note that ordering can also be introduced in this
algebra. For a pronumber whose first component is 0 and

not equal to 0ö , ( )Laa,,0  , has the following property:

( ) raa ö,,00ö << L  or ( ) 0ö,,0ö <<− Laar  for 0>r (6)

Such pronumbers are called infinitesimal, or differential.
According to the multiplication of pronumbers, power
higher than n of an infinitesimal is zero:

( ) 0ö,,0 =maa L     for    nm > (7)

This is an important property of infinitesimal, which is
called nilpotent. It is this that the pornumber algebra is
ÒnonstandardÓ. It is notable that infinitesimal elements have
no reciprocal, therefore the pronumber algebra is not a

complete space, much less a field, but a subspace of R*  in
nonstandard analysis.

Differentiation can also be defined as arithmetic
operation in this algebra. The fundamental functions, such
as exponent, logarithm, trigonometric functions, can be
transformed into the pronumber algebra, either by series
expansion or by the differentiation rule of composite
function.

The pronumber algebra provides the mathematical
principle for AD technique. Its special properties are: (1) a
pronumber consists of not only the value of a function but
also its derivatives of orders as high as desired; (2)
differentiation is defined as arithmetic operation of
pronumbers.

3 AD PACKAGE IN VISUAL C++

The object-oriented languages, with excellent properties
such as data hiding, inheritance and extensibility, present a
natural environment for implementation of AD [2]. An AD
package is developed in Visual C++. In this package we
defined a class, ADS, for pronumbers. The private attributes
of ADS are double, dbVector and dbMatrix. dbVector and
dbMatrix are classes that we defined for vector and matrix,
which include some special operations needed. Some
operators as +, -, *, /, and functions as sqrt, exp, log, pow,
sin, cos, tan, asin, acos and atan are overloaded, so that the
application programmers can use these familiar symbols not
only on real numbers but also on pronumbers or between
the two types. There is an important function, set_variable,
which is used to set the variables of the system to ADS type,
that is:

0,,ö jjj exx = (8)

where 
je  represents a vector whose components are 

kjδ  ,

and 0  represents a matrix whose components are all zero.

Moreover, for facilitation, several constructors are
overloaded.

This package is widely applicable because of the unique
virtues of AD and the object oriented properties of Visual
C++. The only requirement for the user is to write the
following

#include Òads.hÓ
in his application program and change some quantities to
ADS type. It is noticeable that this implementation of AD is
very terse, facilitate, and user-friendly.

4 EXTRACTION ALGORITHM
BASED ON AD

Here we present an extraction algorithm based on AD.
Because the gradient and Hessian matrix of the objective
function can be accurately obtained using AD technology,
this algorithm is directly based on Newton method. In
practical, the Newton method must be modified in order to
insure convergence. The former modifications are usually
concerned about how to make Hessian matrix positive-
definite [3]. However, Hessian matrix being positive-
definite is the necessary condition for global convergence.
This is not always necessary since there is often a feasible
region in practical extraction problem. So it is unnecessary
to modify Newton method for global convergence. Our
modification principle is to find steepest decent direction at
every iterative point. In our algorithm, the iteration is

( )[ ] ( )kkkkk ff xIxxx +−=
−+ 121 λ (9)

where I is the unit diagonal matrix, λ is a factor to be
determined by linear search. This is similar to L-M method.

Generally, the model parameter extraction is a kind of
constrained optimization problem as

(IP)  ( ) ( ){ }0|min ?xgxf

(10
)

The Rockafellar multiplier is applied to deal with this
problem. The improved Lagrange objective function is
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where kp  is the k-th penalty factor, |� is Lagrange

multiplier_For model parameters, the constraints are
generally written as

( ) 12 mxcm ??
(12

)



where m1 and m2 stand for the lower and the upper bounds
given on the model parameters. For this "box constraint",

( )xg  in eq.(10) can be constructed as
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The algorithm proceeds as follows:
1. Define the model parameters to be extracted as ADS

variable xö  and initialize them; Initialize Lagrange
multiplier; Set constraint condition, incremental series of
the penalty factor { }kp , improved Lagrange objective

F
ö~

_tolerance ε  and maximum iteration times n.

2. Using pronumbers' algebraic laws, get ( )kFF xö
~ö~ = . And

then get ( )kxF
~

, ( )kF x
~

 and ( )kF x
~2  according to the

definition of pronumbers.
3. Determine the new Lagrange multiplier as follow:

1|� +k = ( )( )k
k

k p xg0 −|�,max .

4 .  Let ( )[ ] ( )kkk FF xIxxx
~~ 12* +−=

−
λ , and using

linear search method, solve
( ) ( )kFF xx ,

~
minarg

~
minarg * λλ

λλ
==

5 .  *1 xx +k . If ( )ε+1~ kF x , terminate the calculation;

Else, 1+kk .

6. If nk > , exit; Else, transform kx  into ADS variable
kxö , and go to step 2

It is notable that AD technique is merged in this
algorithm. This algorithm is implemented by Object
Oriented Programming technique.

5 TEST MODEL & PARAMETER
EXTRACTION RESULT

In order to prove the effect of this AD-based algorithm,
a constrained parameter extraction for a surface-potential
based MOSFET drain current model was done. For this
kind of models, iterative solution of surface potential is
needed, therefor the parameter extraction of this kind of
models is more difficult than of threshold based model.
However, the surface-potential based model is continuous
inherently and it constructs compact model easily.

5.1 Surface-Potential based model

This model is based on the fundamental equation of
surface potential, in order to consider the short channel
effects such as velocity saturation, drain induced barrier

lowering and the source/drain resistance, some empirical
parameters are applied. The drain current expression is
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)
where w is width of channel, oxC  is gate-oxide capacitance,

gV  is gate voltage, dsV  is drain voltage, fbV  is flat band

voltage, oxbsi CNqr ε2= ( bN  is substrate concentration),

tφ  is thermal voltage, and sϕ  and dϕ  is source/drain

surface voltage:

( )( )tFstsfbgs VV φφϕφϕγϕ 2exp −+−−=
(15

)

( )( )tdsFdtdfbgd VVV φφϕφϕγϕ −−+−−= 2exp

(16
)

where ( )isurtF nNlnφφ = , surN  is surface concentration.

Source/drain surface potential must be solved by an
iterative procedure.

effL  is the effective channel length

ddsleff ValLL ϕ1.0−∆−=
(17

)

qi  is a factor considering source/drain resistance

( ) ( )sdTgi VVq ϕϕ −−=
(18

)

where 
FFfbT VV φγφ 22 ++= .

effµ  is effective mobility

( )( )max1.01 EEEVVa lvnvTgreff +−+= µµ
(19

)

where En and Elv are longitudinal and transverse average
electrostatic field respectively.

There are eleven parameters: W∆ , L∆ , µ , 
fbV , surN ,

bN , maxE , la , da , ra  and dr . Among these, 
fbV , surN  and

bN  appear in the implicit equation and I-V equation

simultaneously.



5.2 Result of Parameter Extraction

The experimental data of 0.8 mµ  NMOSFET is used to

extract model parameter. Its fundamental physics
p a r a m e t e r s  a r e  mL µ8.0= _ mW µ20=  a n d

mTox µ022.0= . The objective function is of least-square

type, and the constraint conditions are as follow (using the
same units as in Table 1):
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Table 1: The result of the parameter extraction

k Value of
objective
function

λ L∆
( mµ )

µ
(103cm2/v-s)

fbV
(V)

surN
(1016cm-3)

bN
(1016cm-3)

maxE
(103v/cm) la da ra dr

VT

(V)

0 257.005 0 0.15 0.8 -0.2 10 1 2.5 1 1 1 1 0.9538
1 5.92987 65.248 0.1857 0.6552 0.037 10.334 0.9299 1.6946 1.3487 0.5713 0.3812 0.6368 1.1807
2 2.3011 19.039 0.1861 0.6588 -0.16 10.182 0.9071 1.6924 1.3536 0.27 0.3865 0.4904 0.9825
3 1.2313 1.7167 0.1849 0.6069 -0.4 9.3463 1.3815 1.6213 1.2791 0.2411 0.4149 0.3314 0.8062
4 1.0037 0.1913 0.1387 0.6242 -0.57 8.7884 1.6045 1.6178 1.7311 0.095 0.6319 0.3116 0.6617
5 0.8109 0.7639 0.1427 0.5997 -0.65 6.6503 2.0628 1.5395 1.8188 0.099 0.5732 0.2536 0.6197
6 0.7338 0.8328 0.1541 0.5533 -0.72 6.1633 2.228 1.5135 1.9021 0.0721 0.3653 0.2157 0.5652
7 0.692 0.2492 0.1654 0.551 -0.84 8.8475 2.9521 1.4821 1.9248 0.0709 0.4074 0.1926 0.5504
8 0.5951 0.0688 0.1822 0.5537 -0.82 8.5795 3.2609 1.4861 1.7051 0.1126 0.4424 0.1834 0.5885
9 0.5217 0.06888 0.1787 0.5781 -0.87 6.371 4.1015 1.6406 1.594 0.1422 0.7255 0.1904 0.5961
10 0.51 0.7639 0.1777 0.593 -0.86 6.1365 4.191 1.5415 1.588 0.1469 0.7665 0.1801 0.6132
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Fig.1: The initial curve of model and measured data
(Note: the dots in Fig.1 are measured data)
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Fig.2: The optimized curve of model and measured data
(Note: the dots in Fig.2 are measured data)

It is shown that the convergence of this algorithm is fast
when the value of objective function is large; the algorithm
still has the tendency to converge when the parameters
return to feasible region. We define the average relative
error of the parameter extraction as

 ( ) NIIIerror
N

i

i
mea

ii
mea √

↵
 −=

=1
mod

(22
)

where N is the number of the iteration times, meaI  is the

measured current, modI  is the current calculated from the



model. For the present extraction, the average relative error
is about 1.97%.

6 CONCLUSION

AD is a promising technique based on the nonstandard
analysis and pronumber algebra. An AD based constrained
optimization algorithm for device model parameter
extraction is presented. In this algorithm, a modified
Newton method is adopted, the constrained conditions are
dealt with by Rockafellar multiplier, and the AD
technology are merged in the optimization procedure
entirely. The distinctive features of this algorithm are: (1)
Using AD technology, the gradient and Hessian matrix of
the objective function can be accurately obtained without
formulae derivation; (2) Taking advantage of the Hessian
information, this algorithm can achieve rather fast
convergency even when the initial values are not well; (3)
The algorithm can extract all parameters in a run without
manual intervention, and the only requirement is to give
initial values and constraint conditions of the parameters.
By this algorithm, a constrained parameter extraction for a
surface-potential-based MOSFET drain current model was
done. And the result is encouraging.
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