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ABSTRACT

The ability to directly calculate the analytical closed-
form electroquasistatic sinusoidal steady-state Coulomb
force (or ac force) exerted on a conductor coated with a lossy
dielectric in the presence of a second grounded conductor
and excited by a sinusoidal voltage is of interest in areas
such as Microelectromechanical Systems (MEMS). This ac
force is due to the phenomenon of dielectric relaxation
existing in the lossy dielectric and is dependent on the
operating frequency of the voltage source as well as the
material properties of the lossy dielectric. In this paper, the
authors apply a new technique based on expressing the
Coulomb force in terms of a special singularity integral to
directly calculate the total ac force exerted on a conductor
coated with a lossy dielectric. Specifically, the example of
the calculation of the Coulomb ac force on a simplified
structure consisting of a solid incompressible lossy
dielectric slab attached to the lower plate of a parallel-plate
capacitor excited by a sinusoidal voltage is considered.
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1 INTRODUCTION

In the field of Microelectromechanical Systems
(MEMS), the ability to directly calculate the analytical
closed-form time-average -electroquasistatic  sinusoidal
steady-state Coulomb force (or ac force) exerted on a
conductor coated by a lossy dielectric in the presence of a
second grounded conductor excited by a sinusoidal voltage
is useful and has relevant applications. For example, it
may be required to calculate the ac force on a highly-doped
silicon cantilever beam MEMS structure coated with a
lossy dielectric oxide layer suspended over a parallel ground
plane with a sinusoidal voltage applied between the beam
and the ground plane.

Recently, a new straightforward technique was proposed
[1] to directly calculate electromagnetic energy in idealized
lossless electrical circuit problems. In this technique, the
electromagnetic energy under consideration is expressed in
terms of a special singularity integral identity which
consists of the integral of the product of the unit impulse
function J(x) and the associated unit step function u(x) [2]
given in its most general terms by:

Jre (DS Dctx = 1= )

where d(x—a)=du(x—a)/dx. The formal derivation of (1) is
given in [1] on the basis of the associated work by
Bracewell [2]. Note that this new technique is only
applicable in the interesting class of problems where the
quantity of interest (e.g., energy) can be expressed directly
in terms of (1) (i.e., the integral of the product of an
impulsive quantity and its associated step-varying
quantity). In this paper, we extend [1] to the direct and
straightforward calculation of electroquasistatic ac force.

For a simple example of the use of this new technique
for force calculation, let us first consider the simpler
calculation of the analytical closed-form electrostatic
Coulomb force (or dc force) exerted on the lower plate of the
simple parallel-plate capacitor shown in Fig. 1 consisting of
two perfectly conducting plates (0=c0) each of area 4 located
at x=0 and x=d and driven by a dc voltage source V.
Fringing fields are neglected. The region between x=0 and
x=d is assumed to be free space represented by &. This
voltage produces a normal uniform x-directed dc electric
field £, in the vacuum region between the plates of the
capacitor. The nature of the induced dc force will be
attractive between the upper and lower conducting plates.
Using the new technique described in this paper, this dc
force can be calculated directly by expressing the Coulomb
force integral equation [3] in terms of the singularity
integral identity given by (1).  Specifically, the total
Coulomb dc force acting on the plate at x=d can be
expressed in terms of (1) as the integral evaluated at x=d of
the product of the equivalent infinitely thin, impulsive
volume charge density p, (representing the surface charge
density oy at x=d) and the associated electric field £, which
has a step-variation. Using the appropriate Gaussian
boundary conditions at x=d, we can express P,=0;0 (x—d),
O—=—&FE, Ex=Eo[1-u(x)] and E/=Vo/d. There-fore, the total
Coulomb dc force F, induced by E, acting on the total
charge Q (due to p,) residing on the lower plate of volume
V' can be calculated as follows:
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This result agrees with the literature [3, 4]. Notice that (1)
is the source of the essential factor of “1/2” in (2) which is
inherent in this class of problems. This example
demonstrates the essence of the new technique described in
this paper.
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Figure 1: Parallel-plate capacitor excited by a dc voltage.

The authors extend this new technique to directly
calculate the ac force exerted on a dielectric-coated conductor
where the dielectric is assumed to be lossy. Specifically,
the example of the calculation of the ac force exerted on the
simplified structure consisting of a solid incompressible
lossy dielectric slab attached to the lower conducting plate
of a parallel-plate capacitor excited by a sinusoidal voltage
source is considered.

2 CALCULATION OF THE AC FORCE

Consider the parallel-plate capacitor shown in Fig. 2
consisting of two perfectly conducting plates (0=) each of
area A located at x=0 and x=d. A solid incompressible
lossy dielectric slab of thickness #<d, conductivity ¢ and
permittivity £=¢&,.& is attached to the lower plate of the
capacitor. The region between x=0 and x=a=d-t is
assumed to be free space represented by &. A sinusoidal
voltage Vocos(ax) is applied across the conducting plates of
the capacitor. This voltage produces normal uniform
sinusoidal steady-state x-directed electric fields in both the
free space and the dielectric material regions between the
plates of the capacitor. It is assumed that the physical
dimensions of the capacitor are much less than a wavelength
A (where A=271Ic/w and c is the speed of light in the
dielectric material) such that the electroquasistatic
approximation is valid [5]. We seek to calculate the total

time-average analytical closed-form Coulomb ac force (i* )

exerted on the lower dielectric-coated conductor plate. Note
that we will use standard sinusoidal steady-state phasor
notation for this analysis.
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Figure 2: Parallel-plate capacitor with solid incompressible
lossy dielectric slab attached to the lower electrode and
excited by sinusoidal voltage source.

Neglecting fringing fields, the total electric field phasor
E, existing between the capacitor plates can be written in

terms of a pair of unit step functions as:
E, = l&[u(x)— u(x —a)] +lju(x —a) —u(x —d)] %))

where Ii) and ’5_ are the electric field phasors external and

internal to the dielectric slab, respectively. Using the
Gaussian  boundary ~ conditions at x=a  (ie.,
Eb_ B go‘li_o =0, and 0 [1_ = WO due to the presence of

free surface charge density represented by the phasor 7y, )
and Faraday’s law (i.e., E_oa"' E_t: " ) [6], we find:
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Now, using Newton’s third law, we can calculate the
desired total ac force (_v ) exerted on the lower dielectric-

coated conductor plate by, instead, simply calculating the
equal and opposite ac force on the upper conductor plate of
the capacitor. This equivalent ac force on the upper plate
can be calculated in one simple step by expressing the
Coulomb force directly in terms of the new special integral
identity (1). The total free surface charge density phasor
~si induced on the x=0 surface of the upper conductor plate

shown in Fig. 2 can be expressed as an infinitely thin

equivalent volume charge density phasor with the use of the
L : p =0 ox) 7 =& FE

unit impulse function as ™, = s where “sp T 00

due to the Gaussian boundary condition at x=0. Therefore,
using the above expressions for E_x and ¥, | and the new

technique described in this paper based on (1), the total



Coulomb ac force exerted on the lower dielectric-coated
conductor plate is found by calculating the negative of the
corresponding ac force exerted on the upper conductor plate
as follows:
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Note once again that (1) is the source of the essential
additional factor of “1/2” in (6) and the sign of the ac force

(5)’) is negative meaning that the direction of the force is

upward (i.e., attractive as shown in Fig. 2) as expected.
After substituting for i o from (4) into (6), we get the

final total analytical closed-form time-average Coulomb ac
force as follows:
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where tand=0/(w¢) is the loss tangent of the dielectric-
coating material. Note that we dropped the negative sign of
the ac force expression for generality.

Let us now consider two interesting limiting cases for
(7). In the first limiting case, assume w—- 0 (i.e., low-
frequency source) and 0# 0. In this case, tand=0/(we) —
and the ac force expression (7) reduces to:
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which is the expected Coulomb ac force exerted on each
conductor plate of a vacuum-filled parallel-plate capacitor
with separation gap d—f. Note that in this case, the
dielectric material behaves like a perfect conductor and,
therefore, (8) is independent of &,.

In the second limiting case, assume 0=0 (i.c., lossless
dielectric slab) and w # 0. In this case, tand=0/(wé€) -0
and the ac force expression (7) simplifies to:
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Note that the force is now a function of &, If we let & — o
in (9), the ac force becomes equal to (8) as expected since,
again, the dielectric material with &=c0 behaves like a
perfect conductor. Alternatively, if we let & - 1 in (9), we

find that (i >‘ g4 I(4d2) since this is the special case

where the dielectric slab effectively does not exist.

3 RESULTS AND DISCUSSION

In this section, we graphically present the results of (7)
by plotting a family of curves showing the variation of the
ac force as a function of both loss tangent (tand) and ¢,
at a specific #/d ratio.  Specifically, in Fig. 3, the
normalized magnitude of the ac force given by

k= @ )/{%VOZA ,(4d2] is plotted as a function of tand

(ranging from 107 to 10°) for five different values of & at the
specific ratio #/d=0.5. Notice that the two asymptotic
values of F, in Fig. 3 reduce to the interesting limiting
cases given by (8) and (9) at the two extreme values of the
loss tangent. In addition, it is clearly seen that the force is

dependent on &, for the limiting case when tand « 1 as

expected from (9), whereas, when tand » 1, the force is
constant and independent of &, as expected from (8). For
example, in the case when £=1 in Fig. 3, the two limiting
values of F, are four and one as expected from (8) and (9),
respectively.

The physical nature of the Coulomb ac force on the

dielectric-coated lower conductor plate (2 ) in (7) is due

to the phenomenon of dielectric relaxation as well as the
presence of both free and polarization surface charges at
both the vacuum/dielectric and dielectric/conductor
interfaces at x=a and x=d, respectively. Therefore, the total
Coulomb ac force exerted on the lower dielectric-coated
conductor consists of the sum of two individual ac forces

such that Er ): Gca >+ Gd ) where ( xa ) is the ac force

exerted at the dielectric/vacuum interface at x=a and,
similarly, &d ) is the ac force at the surface of the lower

xa )and (_xd ) can be

directly calculated independently using the new technique
described in this paper. This detailed calculation is beyond
the scope of this paper. If they are calculated separately,
their ratio is found to be:

{7_.«1 )/Gd )= g’ (tanzé + 1)—1 (10)

Note that depending on the value of the loss tangent and &,,
one of these individual forces may dominate the total ac
force given by (7). We can conveniently re-express the loss
tangent as tand=(271)'T/(€/0) where T=21Tw is the period
of oscillation of the ac voltage source. Therefore, the loss
tangent can be interpreted as a quantity which is directly
proportional to the ratio of the period of oscillation T
and the material’s dielectric relaxation time £/0. In other
words, the quantities T/(£/0) and &, determine the relative

conductor plate at x=d. Both



contributions of Em)and @d ) to the total net ac force in
(7). For example, for low frequencies (i.e., tand » 1),
(EEL) ano= g[en) 7o >> 1 ang,
therefore, <£m) is the major contributor to the net ac

force. This is due to the ability of the free surface charge at
x=a to remain in phase with the low-frequency

oscillations (i.e., T»&/0). Similarly, for high frequencies
(i.e., tand « 1), @a)/(]ixd )’ (53_ 1) and, therefore,

either (5 m) or (Ii xd) may be the major contributor to the

net ac force depending on &. This is due to the fact that the
free surface charge at x=a can now no longer remain in phase

with the high-frequency oscillations (i.e., T « £/0).
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Figure 3: Plot of normalized force F, versus both
loss tangent and &, for #/d=0.5.

4 CONCLUSIONS

In this paper, we have utilized a new special singularity
integral identity given by (1) to directly and
straightforwardly calculate and plot the closed-form
analytical expression for the time-average electroquasistatic
sinusoidal steady-state Coulomb ac force exerted on a solid
incompressible lossy dielectric slab attached to the lower
conductor plate of a parallel-plate capacitor. The final
results for the ac force clearly show the important and
interesting dependence of the force on the material dielectric
constant & as well as the loss tangent (tand) which is set by
the operating frequency w of the driving ac voltage source
and the material properties (0 and &) of the dielectric
material. In other words, it is the relative values of the
period of oscillation of the ac voltage source T=27w and
the dielectric relaxation time & 0 of the dielectric material in
addition to & which determine the magnitude of the final
resulting net ac force provided in (7) and plotted in Fig. 3.

This example demonstrates the power, simplicity and
utility of this new technique to directly calculate
electrostatic and electroquasistatic Coulomb forces in
analytical closed-form. The authors believe that this
technique for calculating the ac force on a dielectric-coated
conductor is of interest to the MEMS community in related
problems involving MEMS structures actuated by
electroquasistatic forces. For example, this technique could
be used to extend the work of Osterberg, et al [7] to
simulate electroquasistatic-induced beam bending in
cantilever or bridge beam MEMS test structures under more
complex conditions such as ac voltage drive and the
presence of a lossy dielectric coating. Only pure highly-
doped silicon MEMS beam structures suspended over a
ground plane under dc voltage drive were considered in [7].
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