Vision-based Extraction of Geometry and Forces from Fabricated Micro Devices
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ABSTRACT

In the field of micro-electromechanical systems
(MEMS), there are often times when a model derived
directly from the microstructure of a fabricated device
would be useful. In our research, the image of the structure
is taken by a CCD camera mounted on a microscope. This
image is then processed to get the basic physical features on
which a physical model can be established. This model can
then be used for further analysis and simulation. We present
some examples of generating both a CAD solid model and
a macro-scale-manufactured prototype. In addition, we are
studying the ability to use such visual measurements in
order to determine deformations, strains, and forces present
in a deformable structure under loading. This is done using
images of the original and deformed structure to determine
the deformation gradient, and from this solving an inverse
problem to find the external loading. Our methodology and
the numerical difficulties encountered in this approach will
be discussed.

Keywords: CAD/CAE/CAM, computer vision, force
recovery.

1 INTRODUCTION

The exact geometry of fabricated MEMS devices is
necessary and sometimes critical for accurate simulation
and theoretical characterization. A cantilever beam built in
a surface micromachining process is known to exhibit
markedly different electrostatic pull-in behavior if the exact
geometry of the compliant support and any over-etch in the
process are not modeled well [1, 2]. It is not always
possible to foresee these features to incorporate them when
creating solid models from mask designs and process data
alone. For a range of MEMS devices from a simple
cantilever to a complex wedge motor [3] and several
microfluidic devices, it is helpful to be able to create
geometric models directly from the manufactured micro
prototypes. This procedure, called reverse engineering for
MEMS, is discussed in this paper along with two
applications. The first application is using scaled-up macro
prototypes for evaluation and re-design of MEMS and the
second, the feasibility of a non-contact, vision-based force
sensor for micro devices. The reverse engineering
technique for MEMS and the two applications are discussed
briefly in the following sections. For details, see [4].

2 GEOMETRY EXTRACTION

The reverse engineering procedure is illustrated in
Figure 1. First, a digital image is captured using a CCD
camera mounted on a microscope for 2-D top-view
extraction. Using various image processing algorithms [5,
6] and data conversion techniques, the following operations
are carried out: (i) binary thresholding (ii) edge detection
(iii) edge chaining (iv) curve fitting to generate planar
models based on lines and circular arcs (v) conversion to
IGES format (vi) exporting into any commercial solid
model software to build an extruded 3-D model.

Algorithm

Figure 1: Reverse engineering for MEMS.

Edge detection: First, we convert the captured gray
scale image to a binary (black and white) image by
choosing a suitable threshold. We have developed an
algorithm to extract the pixels that form the edges in the
binary image.

a) Original image
Figure 2: Edge detection.

b) Obtained edge



Chaining: In this step, we further examine the
collection of pixels that form the edges to group them
separately in order to identify closed or open curves. Each
closed or open curve is formed by chaining the pixels using
an efficient edge-chaining algorithm. The location of each
pixel is used to denote the coordinates of each point on the
curves.

Arc and line extraction: Curves formed by chaining
the edge-points are not in a compact format to export to a
standard solid modeling software. Therefore, we fit circular
arcs and straight lines to the edge-pixels. We first fit
circular arcs to the data wherever possible within the
specified accuracy using a least square algorithm. We use
the remaining edge-points to fit straight lines. The essential
information regarding the arcs and lines is written in the
IGES format.

Solid model creation: Based on the extracted arcs and
lines, an IGES file is written. We have chosen to use the
IGES format because it is compatible with many different
modeling analysis software packages. Finally, by extrusion
a 3-D model can be obtained, for example, in ProEngineer
[7]. Since we have a single image (a projection), only an
extruded model can be built. If multiple images from
different viewpoints are used, a more accurate 3-D model
could be reconstructed. The following (Figure 3) is the 3-D
model we created for a silicon device, in this case a micro-
gripper where exact profile with all its imperfections is
reflected in the solid model. SEMs that provide the
perspective views, taken from multiple directions will be
necessary to replicate 3-D features.

(

a) Original image b) Extracted edge

¢) 3-D model
Figure 3: 3-D model reconstruction.

3 MACRO PROTOTYPES FOR MEMS

Just as scaled-down models are used for testing and
evaluation of massive objects such as aircraft and ships
before manufacturing prototypes of actual size, in MEMS
too there are situations when a scaled-up prototype is useful
and economical in the design stage. It should be noted
however that many transduction processes used in MEMS
(for example, electrostatic force) couldn’t easily be
replicated at macro scale. Macro prototypes are especially
useful in purely mechanical MEMS where intermittent
contacts occur among the rigid and compliant elements and
require accurate dynamic simulation.

Once a 3-D model is generated, we can generate a
macro-scale prototype. This can be done in many different

ways, e.g.; CNC machining, stereolithography, fused
deposition modeling (FDM), etc. From the macro-scale
model, we can learn more about the device. Moreover it
provides a good means for visualization and manipulation
of the microstructure. In ProEngineer, an “stl” file could be
output from the 3-D model. Then an ABS plastic model
(macro-scale) can be made by an FDM1650 stratasys rapid
prototyping machine. Figure 4a is the FDM model we made
based on the 3-D model. Figure 4b shows the wedge-motor
made using Sandia's SUMMIT process [3]. Using the mask
data and process information, we created and tested a
macro prototype of the micro wedge-motor.

b) Wedge motor

a) Gripper
Figure 4: ABS plastic macro models.

4 FORCE RECOVERY

Using visual measurements of a deformable
micromechanical structure before and after application of
the force, we compute the forces by solving an inverse
nonlinear elastic analysis problem. From prior and
subsequent geometric profiles, using a discretized finite
element model, Cauchy-Green deformation gradient and
from this nonlinear logarithmic strain filed are computed.
Knowing constitutive properties of the material, the stress
field and then internal forces for each element are obtained.
Summing up internal force contributions from all elements
at a node, the external forces and support reactions are
obtained. This forms the basis for our vision-based force
sensor for MEMS.

4.1 Finite element model
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Figure 5: Isoparametric finite element model.

Planar isoparametric finite elements are adopted in our
model (Figure 5). We first compute the deformation
gradient from the displacement field. Using the deformation
gradient, we compute the strain in each element. The
deformation gradient matrix is defined as below.
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Where X is the deformation gradient matrix; ‘x, 'y are the
coordinates of the deformed structure; and “x, °y are the
coordinates of the undeformed one.

There are several large strain measures [8] we can
choose from. In our research, the logarithm strain is chosen
since it corresponds to the true stress. The logarithm strain
can be computed from the formulae given below:

c=x*x" (2a)
y=ch (2b)
£=In() (2¢)

Where € is the logarithm strain.

By knowing the material properties, the stress can be
obtained from the strain. Here we assume the material is
still linear even though the strain could be large. For the 2-
D plane-stress problem, the material property matrix is
defined as:

v 0
M = E 1 0 (3)
1-v?
0 (1-v)/2

Where £ is Young’s modulus and V is Poisson’s ratio.
Then the stress, ¢ , can be obtained simply from the strain,
&, as:

o=M*e “

Where O is the stress and ¢ is the strain.
For each finite element, the internal force can be
computed from the following formula:

p=1t 5)
f

q
F= MBTodv (6)

Where ¢ is the strain; g is the displacement; U is the
stress; and £ is the internal force vector. We use a
numerical method to evaluate the & matrix in the above
formula. Gauss quadrature points are taken to evaluate the
integration. Figure 6 shows the Gauss points for 4-node
element and 8-node element (the cross marks are Gauss
points).

a) 4-node element

b) 8-node element
Figure 6: Gauss points in the element.

Once the internal forces for each element are computed,
by summing up the internal forces at the common nodes,
we can obtain the applied load at each nodal point.

4.2 Numerical Simulation

In this section, we investigate the ability to solve this
inverse problem using the method described above. A
numerical simulation is performed on the compliant
crimping mechanism using ABAQUS [9]. Due to device
symmetry, we show only the upper half of the device. The
deformation due to the tip load (at the right) was first
solved in ABAQUS. Based on this deformation, the force
was recovered. The following figures show the force
recovery from initial and final deformations. The arrows
indicate recovered forces. In Figure 7a, the extreme left
nodes and bottom nodes are constrained in both x and y
directions which is the large displacement and large strain
case. In this case, the force recovery is accurate and the
support reaction forces and the external force are clearly
seen. In Figure 7b, the extreme left nodes are fixed in both
directions, but the bottom nodes are just constrained in the
y direction, which is the large displacement and small strain
case. In this case, the recovery is not good and some
“unnecessary” nodal forces appear because strains are too
small and are affected by numerical errors. We discuss
these issues further below.

a) Large strain case b) Small strain case
Figure 7: Simulation result.

A theoretical sensitivity analysis shows that the strain
computation is very sensitive to the perturbation in the
displacement field.



Let the left Cauchy-Green symmetric matrix C defined
in Equation 2a be written in the following form.
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We define the sensitivity of the relative error for € i

defined in Equation 2¢ with respect to ¢, as follows.
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Sensitivity analysis shows S, and S,,; will approach
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infinity when the strain is very small. See [4] for details.

4.3 Experimental results

a) Deformed macro-beam b) Vision based load recovery
Figure 8: Experiment on the macro-beam.

Experiment on the macro-beam: A simple experiment
has been done on a fixed-fixed polypropylene beam
(206mm ~Amm ~6mm). Figure 8a shows the experimental
setup. A CCD camera is used to capture the images of the
undeformed and deformed shape of the experimental
object. Black and white checkerboard pattern was pasted on
the beam in order to identify the mesh points. The
recovered forces are shown as the arrows in Figure 8b.
However, except for the expected external load, a lot of
“unnecessary’ forces that are originated from the
experimental displacement error are observed. This is
because the force recovery is sensitive to the displacement,
which means unless the precise displacements are obtained,
we are unable to recover the load accurately. One way to
improve this is to magnify the image in order to reduce the
error. But generally, a single visual measurement is not a
proper approach to get the accurate displacement field.

Experiment on the micro-beam: Since a lot of MEMS
system can be modeled as the frame, a Matlab code for 2-D
nonlinear finite element analysis based on the frame
element was developed. By solving the forward problem
iteratively, we can recover the applied load. Figure 9 shows
the algorithm we used to recover the single force.

A micro steel beam (800um <21m ~25um) is made
for the experimental use. The beam is fixed at both ends
and a force is applied in the middle as shown in Figure 10.
Using the algorithm provided above, we can recover the
applied load as 0.1657 (N).
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Figure 9: The flow-chart for the force recovery.

Figure 10: Deformed micro beam.
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