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ABSTRACT

In this paper, a micropump actuated by electrostatic force is
dynamically analysed. Mathematical model is established to
evaluate the dynamic response of the micropump. Electro-
mechanical coupling effect is considered in evaluating the
electrostatic force applied on the pump electrode. Boundary
Element Method is employed to solve the three dimensional
Laplace equation that the potential difference satisfies.  A
combination of Assumed-mode method and Boundary
Element Method is employed to solve the governing
equation of the pump diaphragm. Newmark iteration
method is utilized to solve the decoupled ordinary
differential  equations. Deflection of the oscillated
diaphragm is demonstrated to evaluate the performance of
the electrostatic pump. Amplitude and frequency of the
potential difference between the two electrodes are
investigated.

Keywords : Micropump, electrostatic force, electro
mechanical coupling, three dimensional boundary element
method, dynamic analysis, assumed-mode method

1 INTRODUCTION

Recently efforts have been pushed to the study and
development of micropumps [4-9]. According to working
principles of actuation, micropump can be listed as
electromagnetic, electrostatic, piezoelectric and shape
memory alloy etc. In the development of micropumps it is
essential to predict the performance of the micropump
before the prototype is fabricated in order to save
production cost and get a better design [3, 9]. During design
process of micropumps, modelling of micropumps is
essential.

Electrostatic micropump has attracted attention in recent
years. In the design and modeling of the electrostatic
micropump, electro-mechanical coupling effect is
considered. As voltage is applied onto a capacitor, charges
are induced on the plates of the capacitor and therefore
electrostatic force is generated. As one plate  is flexible
enough to deform, the distribution of the charges on this
plate varies and electrostatic force changes
correspondingly, which illustrates a coupling mechanism of
electrical and mechanical effect. To study this electro-
mechanical coupling effect, Boundary Element Method is

employed to evaluate the charge density and corresponding
electrostatic force. A combination of Finite Element
Method and Boundary element Method is employed to
solve this problem[1,2]. Currently, two dimensional and
three dimensional static problems have been studied in
literatures [1,2] and two dimensional dynamic case is also
studied. However, due to the complexity of microstructures,
three dimensional dynamic problems have not been studied
thoroughly. With this objective in mind, we present a three
dimensional micropump driven by electrostatic force to
study its performance. Direct Boundary Element Method is
used to solve the three dimensional Laplace equation and
evaluate the charge density and electrostatic force.
Assumed-modes method is employed to solve the
governing equation of the diaphragm of the micropump.
Numerical simulation is conducted to study the
performance of the micropump.

2 DYNAMIC MODEL OF AN
ELECTROSTATIC MICROPUMP

The scheme of the electrostatic micropump is shown in
Figure 1. Electrode 2 is fixed . As voltage is applied to the
electrodes, the thin electrode 1 deforms toward its
counterpart electrode 2, which induces bigger volume of the
pump container and thus fluid is sucked into the pump
chamber. As voltage is released the diaphragm electrode 1
comes back so as to squeeze the fluid out.

Electrode 1 is a four edge clamped plate and its dynamic

Electrode 1

Figure 1 Scheme of the electrostatic micropump

Electrode 2



equation can be written as the following form [10]:
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which can be in the following brief form:
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D , E  is YoungÕs modulus, ρ  is the

density of the plate, µ  is PoissonÕs ratio, h is plate

thickness, p  is the external load applied on the plate, itÕs

the electrostatic force in this application.

3 CALCULATION OF CHARGE
DENSITTY AND ELECTROSTATIC

FORCE

As a voltage is applied onto the undeformed conductive
plates, electrical charges are induced on the surface of the
plate, and these charges induce surface normal pressures
which are the electrostatic load p  and it can be calculated

by equation (3)
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where p is the normal outward pressure on the plate, q  is

the surface charge density at point ( )yx,  on the surface of

the conductive plate, and ε  is the dielectric constant of the
medium in which the plate is placed.

The charges distributed on the plate surface satisfy
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φ  is the electrostatic potential of the conductor, n is the

inward normal to a conductor at (x,y). The electrostatic
potential φ , in the region exterior to the conductor,

satisfies LaplaceÕs equation

02 =φ                                                                           (5)

The three dimensional Laplace equation (5) is solved with
three dimensional Boundary Element Method. The 3-D
domain is configured as Figure 2.

There are mixed boundary conditions. In Figure 2, the
potential of the top surface (electrode 2) is assumed zero,
and the potential of the bottom plate (electrode 1) is the
applied voltage. The potential gradient of all the other four
side surfaces are zero. Dimension of the top and bottom
plate is the same as mmm µµµ 1100100 ↔↔  and the

distance between the two electrodes is mµ2 .

4 SOLUTION OF THE GOVERNING
EQUATION

Illustration of electromechanical coupling effect:

Assume deflection ( )tyxw ,,  of electrode 1 as
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is the normal shape function                                                           

in which
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Figure 2 Configuration of the 3-D domain

( )( )( )tyxwzyx ,,,,φ ( )( )( )tyxwzyxq ,,,,

( )( )( )tyxwzyxp ,,,,( )tyxw ,,



0.0 5.0x10-6 1.0x10-5 1.5x10-5 2.0x10-5

-6.0x10-6

-4.0x10-6

-2.0x10-6

0.0

2.0x10-6

4.0x10-6

6.0x10-6

8.0x10-6

Case 3-5: potential difference is 100.0*sin(3100000.0*t) 

distance between the two electrodes is 2.0 um

(omega=omega(1,1)/(2.0*0.983))

T
ra

ns
ve

rs
e 

di
sp

la
ce

m
en

t o
f c

en
te

r 
po

in
t (

m
)

Time (s)

0.0 2.0x10-6 4.0x10-6 6.0x10-6 8.0x10-6 1.0x10-5

-6.0x10-6

-4.0x10-6

-2.0x10-6

0.0

2.0x10-6

4.0x10-6

6.0x10-6

Case 3-1: potential difference is 100.0*sin(3046284.0*t) 

distance between the two electrodes is 2.0 um

(omega=omega(1,1)/2.0)

T
ra

ns
ve

rs
e 

di
sp

la
ce

m
en

t o
f c

en
te

r 
po

in
t (

m
)

Time (s)

0.0 0.1 0.2 0.3 0.4 0.5

0.0

1.0x10-7

2.0x10-7

3.0x10-7

4.0x10-7

5.0x10-7

Comparison of different amplitude of potential differe

with 100.0*sin(68.0*t) and 50.0*sin(68.0*t) 

distance between the two electrodes is 2.0 um

T
ra

ns
ve

rs
e 

di
sp

la
ce

m
en

t o
f c

en
te

r 
po

in
t (

m
)

Time (s)

Substitute (3) into system equation (2), we get
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Multiply ( )yxW sr ,,  on each side of equation (9) and

integrate over the plate area we get
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According to orthogonal condition, equation (9) can be
transformed to a series of decoupled equations
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Here we take an interception of the vibration mode to r=1,
2, 3 and s=1, 2, 3.

The natural frequencies of the plate are:
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in which
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Then equation (11) could be solved with Newmark
numerical method with electrostatic force interactively
solved with Boundary Element Method at each time step.

5 SIMULATION RESULTS

Figure 4 Response as driving frequency is
equal to half of the natural frequency of the
diaphragm

     (13)

(10)

Figure 5-1 Response as driving frequency
is slightly bigger than the first natural
frequency

Figure 3 Response under different amplitude of
 potential difference between two electrodes
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6 CONCLUSIONS

1. The vibration element of the micropump has been
simplified as a clamped thin plate. Interaction of
mechanical deflection of the plate and the electrostatic
force has been investigated and implemented.

2. A new method combining the assumed-mode method and
Boundary Element Method has been developed for
modelling of the electrostatic micropump.

3. Newmark method has been employed for solution of
plate deformation since Newmark method is an implicit

method which always gives a convergent solution. Only if
the time step is properly selected, the Newmark iteration
provides reasonable result.

4. Deflection of the diaphragm of the micropump is of
nonlinear relationship with the amplitude of the potential
difference between the two electrodes.

5. As frequency of the driving voltage is close to half of the
first natural frequency of the vibration diaphragm, the
diaphragm goes to a resonant vibration state.
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Figure 5-2 Response as driving frequency is
slightly smaller than the first natural frequency

Figure 6 Response as driving frequency is
far away from the first natural frequency
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