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ABSTRACT

This paper details advanced simulation techniques
for e�ciently determining system behavior of integrated
microsystems that contains both circuit elements and
micromechanical ones. Techniques for building reduced-
order dynamical models for coupled energy domain non-
liner (both weakly nonlinear and strongly nonlinear)
MEMS devices have been developed. An open-ended
and expandable simulation framework that enables com-
plete simulation of integrated microsystems is also im-
plemented.
Keywords: nonlinear, dynamical, model-order reduc-
tion, composite simulation.

1 INTRODUCTION

Microelectromechanical systems are a rapidly �eld
with great future potential. Simulation of these systems
including both micromechanical devices and electronics
will allow prediction and optimization of system perfor-
mance before costly and time-consuming prototyping.
Most micromechanical devices involve some form of non-
linearity. The action of these devices usually involves
several physical e�ects which are coupled together. Di-
rect dynamic simulation based on fully-meshed struc-
tures is computationally intensive, making it di�cult to
use in system-level simulators. In order to perform rapid
design prediction and optimization of microelectrome-
chanical systems, it is essential to build accurate and
easy-to-use reduced-order dynamical models for these
devices [4].

In the past, a lot of e�orts have been focused on
generating MEMS device reduced-order models using
lumped-parameter techniques where devices are approx-
imated as a network of circuit elements [1-2]. However,
it is often di�cult to accurately model continuous sys-
tems as lumped elements [3]. Another approach [5] uses
static linear analysis to generate the linear modes of the
device and formulate device dynamic behavior in terms
of a �nite set of the linear modes. However, static linear
modes may not adequately capture the dynamic nonlin-
ear behavior of the device [4]. Also when the problem in-
volves dissipation such as the 
uid damping e�ect, which
is very important in studying the dynamic behaviors of
most of the MEMS devices, this approach becomes sub-
stantially more di�cult. Recently, in [6], Arnoldi ap-
proach is used to automatically generate reduced-order
models for a �xed-�xed beam structure. It is very e�-
cient to generate reduced-order models when the beam is
operated in the linear regime. However when the beam
de
ection is large, linearized model deviates from the
original nonlinear model signi�cantly suggesting that
nonlinear model-order reduction strategies are required.

In this paper, we propose several techniques to auto-
matically generate reduced-order dynamical models for
coupled energy domain nonlinear microelectromechan-
ical devices. Speci�cally, a new method by combining
Taylor series expansion and Arnoldi method is proposed
for developing reduced-order models for weakly nonlin-
ear MEMS devices. To develop reduced-order models for
strongly nonlinear MEMS devices, the Karhunen-Loeve
Galerkin's procedure is developed. Simulation results
with the reduced-order models for a �xed-�xed beam
structure demonstrate good agreement with the data
generated from the �nite di�erence model but with an
order of magnitude reduction in execution time. These
model reduction techniques can be applied to both en-
ergy conservation and energy dissipation systems. The
reduced device models are represented by a small set of
coupled ordinary di�erential equations and thus can be
e�ectively connected to a circuit simulator for complete
system simulations.

With the advent of micromechanical modules to be
integrated with electronic circuits, simulation and anal-
ysis capabilities that go beyond traditional SPICE type
electrical-level simulation to support multi-level and mixed
technology simulations are required. For this purpose, a
multi-level and mixed-technology simulator iSIMS (illi-
nois simulator for integrated microsystems) has been
developed. Various issues when simulating mixed tech-
nology systems represented across multi-levels such as
system partitioning, event processing and scheduling,
mixed relaxation/MNA formulation, and timestep con-
trol have been addressed.

2 BEAM EXAMPLE

In order to illustrate the model reduction technique,
we examine the example of a �xed-�xed beam structure
in a 
uid (air) environment which is also studied in [6][8].
Fig. 1 shows the front view of the beam structure. When
a voltage is applied, the top plate bends downward due
to the electrostatic force. Also when the beam bends,
the pressure distribution of the ambient air under the
beam increases and this pressure increase produces a
backward pressure force which damps the beam motion.
The beam can be modeled by coupling the 1D Euler
beam equation with the electrostatic force and the 2D
Reynolds's squeeze-�lm damping equation as follows,
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0 (p� pa)dy is the mechanical load from the squeezed
air, u(x; t) is the height of the beam above the sub-
strate, and p(x; y; t) is the pressure distribution under
the beam. Other parameters include beam length l =
610um, width w = 40um, thickness t = 2:2um, un-
de
ected gap g0 = 2:3um, material Young's modulus
E = 149GPa, density [�=(hw)] = 2330kg=m3, air vis-
cosity � = 1:82 x 10�5kg=(m � s), moment of inertia I =
wh3=12, residual stress [S=(hw)] = �3:7MPa, Kund-
sen's number K(x; t) = �=u(x; t), and the ambient air
pressure pa = 1:013 x 105Pa. The mean-free path of air
� = 0:064um.

Equations (1)-(2) show that simulating the dynami-
cal behavior of the device involves nonlinear squeeze-�lm
damping and also mechanical, electrostatic, and 
uid
components. The system is nonlinear due to the nonlin-
ear nature of the squeeze-�lm damping equation and the
nonlinear electrostatic force. Direct simulation is very
expensive. Instead lower-order models are desired.

V(t)

Substrate

Top plate

Figure 1: Schematic view of the �xed-�xed beam mi-
crostructure.

3 MODEL-ORDER REDUCTION

In this section, we will �rst discuss model-order re-
duction for weakly nonlinear MEMS devices by using
Taylor series expansion and Arnoldi method. We then
discuss model reduction for strongly nonlinear MEMS
devices by using the Karhunen-Loeve decomposition and
Galerkin's method.

3.1 Taylor Series Expansion with

Arnoldi Process

In [6], model-order reduction of the �xed-�xed beam
device has been achieved by �rst linearizing the nonlin-
ear system (1)-(2) and then performing model reduction
on the linearized system. It is shown in [6] that when the
beam is operated with a very small input voltage, the re-
duced linear model can represent the original nonlinear
beam model accurately. However, when the input volt-
age becomes larger the reduced linear model derivates
from the original nonlinear model very signi�cantly in-
dicating that the nonlinear e�ects of the beam becomes
important and can not be simply neglected.

In order to develop reduced nonlinear models, a new
method by combining Taylor series expansion and Arnoldi
method is proposed. Let us �rst discuss deriving re-
duced 2nd order nonlinear model for the beam device.
Similar to [6], we start by performing Taylor series ex-
pansion of the device nonlinear equations (1)-(2) around

the equilibrium state. De�ne û(x; t) = u(x;t)�u0
u0

and

p̂(x; y; t) = p(x;y;t)�p0
p0

to be the normalized perturba-

tions with u0 = g and p0 = pa. Plugging û(x; t) =
u(x;t)�u0

u0
and p̂(x; y; t) = p(x;y;t)�p0

p0
into (1)-(2) and

applying 1
(1+û)2 = 1 � 2û + 3û2 + : : : and 1

(1+û) =

1 � û + û2 + : : :, we derive an approximated second-
order partial di�erential equation model for the beam
device as

EI
@4u

@4x
� S

@2u

@2x
= (2u� 1)

"0wV
2

2g3
+
pa
g

Z w

0

pdy

�
3"0wV

2

2g3 u2 � �@
2u
@2t

(3)

�
(1 +

6�

g
) + (1 +

6�

g
)p+ (2 +

6�

g
)u

�
g2pa
12�

r
2p

= @p
@t

+ (1 + p� u)@u
@t

(4)

where in (3)-(4) we keep all the linear and second order
terms of û and p̂ and neglect the third and higher order
terms. Also the ^ is dropped to simplify the notation.
Equations (3)-(4) are further discretized in space with
an (N+1) x (M+1) mesh. We then de�ne a state-vector
X of size Q as X = [u1 : : : uN

@u1
@t

: : : @uN
@t

p11 : : : pMN ]
T

and project it onto the mesh points. By doing this, we
convert equations (3)-(4) into a second-order state-space
model of size Q as

_X(t) = AX(t) +XTPX +Bv(t) (5)

y(t) = CTX(t) (6)

where A 2 <QxQ, B and C 2 <Q and are determined
by the input and output. Here we choose the output to
be the beam center point position and input to be the
applied voltage. P can be considered as a Q array of Q
by Q matrix and contains all the second-order nonlinear
behavior of the original beam model (1)-(2). The main
idea of reducing (5)-(6) is to apply a state-vector projec-
tion operation to transform the linear and second-order
nonlinear terms in (5)-(6) into low dimensional forms
(say q with q � Q). The state vector transformation
matrix we used is the column orthogonal matrix Vq gen-
erated from the Arnoldi process when it is applied to the
linearized beam system. Readers are refer to [6] for a de-
tail description of the Arnoldi process. It can be shown
that this transformation not only reduce the linear com-
ponents of the original model (1)-(2) by matching the
dominant moments of its linearized system but also re-
duce the higher order nonlinear terms. And in the case
when q=Q, this transformation ensures that the reduced
system to be exactly reproduced. During model reduc-
tion, if we increase q, we can expect that the reduced
system will get closer to the original system.

It can be easily extend this method to higher order
approximated state-space models. In Fig. 2, we compare
the original �nite di�erence model, reduced 4th linear
model, reduced 4th second-order nonlinear model and
reduced 4th third-order nonlinear model simulation re-
sults for the �xed-�xed beam structure with a 7:4V step
input. The beam center point position vs. time is plot-
ted. As can be seen, with 7:4V input, the conventional
reduced linearized model (also studied in [6]) deviates
from the original nonlinear solution signi�cantly. How-
ever, the reduced second-order and third-order nonlin-
ear models can follow the original �nite di�erence model
with a much better accuracy. Especially the reduced
3rd-order nonlinear model follows the original nonlinear
solution very faithfully. The speed up factor for the re-
duced 2nd model is 15:6 with an error tolerance of 2:26%
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Figure 2: Comparison of original nonlinear model and
the reduced models.

and 4:8 for the reduced 3rd model with an error toler-
ance of 0:49%.

Besides the Arnoldi method, any other linear model
reduction techniques can also be used together with the
Taylor series expansion to generate reduced nonlinear
models, such as in [7], the balancing and the aggregation
methods are used. However the Arnoldi method with
Taylor series expansion will provide much better results.

3.2 Karhunen-Loeve Galerkin's

Procedure

To develop reduced-order models for strongly nonlin-
ear MEMS devices, the Karhunen-Loeve Galerkin pro-
cedure is proposed. The reduced-order models are ex-
tracted from fully-meshed �nite element/�nite di�er-
ence model runs using the Karhunen-Loeve decomposi-
tion method. Eigenfunctions obtained from the Karhunen-
Loeve decomposition method are then used as basis func-
tions in spectral Galerkin expansions of the device gov-
erning partial di�erential equations to generate the re-
duced order models. In [8], the singular value decompo-
sition (SVD) method is exploited to generate the global
basis functions. Singular value decomposition is a de-
terministic approach which minimizes the total least-
square error between the sampled data of the FEM/FD
solution and the reduced model solution. In this re-
search, we use a relatively complicated procedure, the
Karhunen-Loeve decomposition method, to generate the
global basis functions. Generating the global basis func-
tions by using Karhunen-Loeve decomposition is opti-
mal in the sense that the reduced system will on av-
erage contain the most energy of the original system
(energy compaction property). The mean-square error
between the unknown function and its truncated rep-
resentation is minimized. Generating the global basis
functions through the Karhunen-Loeve decomposition
is also optimal in the sense that the number of basis
functions in the truncated representation is minimized
for a given error. It also permits advanced techniques
such as phase-space analysis to be carried out.

In Fig. 3, we compare the simulation results of the
�nite di�erence model and the reduced models for the
�xed-�xed beam device. Compared to section 3.1, the
external applied voltage is larger enough to make the
pull-in actual happens. For the �nite di�erence solution,
a 40x10 meshing is used, which results in 480 coupled
nonlinear ODEs. From the results, we see that when 3
displacement and pressure basis functions are used (a
total of 9 ODEs), the reduced model result is almost
indistinguishable from the original �nite di�erence so-
lution. The speed up factor is about 25.5 and an error

tolerance of less than 0:36%. This drastic reduction in
computation time will facilitate the MEMS device mod-
els to be e�ectively used in system-level simulations.
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Figure 3: Comparison of the �nite di�erence model and
the reduced-order models for a 15V , 20kHz sine input.

displacement eigenvalue pressure eigenvalue
mode percentage mode percentage
1 0.99980885 1 0.97604003
2 0.00018616 2 0.02309392
3 0.00000463 3 0.00053920

Table 1: Eigenvalue percentages of the �rst three eigen-
functions generated by Karhunen-Loeve decomposition.

Table. 1 shows the Eigenvalue percentages of the �rst
three eigenfunctions generated by the Karhunen-Loeve
decomposition method for the pull-in beam device. As
can be seen, the �rst several eigenmodes are su�cient to
capture up to 99:9% of the total energy of the system.

In order to capture burst-like behavior which occurs
in a very short time interval (thus contain very little en-
ergy) but might be dynamically very important, phase-
space Karhunen-Loeve analysis is also performed. Fig. 4
shows an example of the beam center point displace-
ment plotted as a function of both time and arclength.
As can be seen, when plotted against arclength s, the
"bursts" are much broader and occupies a much wider
fraction of the total space. This makes it unlikely to
miss the "burst" components if one sample snapshots
in equally spaced arclength rather then time. However
the dynamic behavior of the beam system is not very
rich, it is unlikely to generate extremely sharp bursts
components. When phase-space Karhunen-Loeve tech-
nique is applied, the results are almost identical as that
of the time-domain decomposition. But one can imagine
situations where the phase space K-L modes will be dif-
ferent from the time domain K-L modes. And this can
have an signi�cant e�ect on deciding which structures
are the dominant structures to be used in constructing
the lower-order models.

4 COMPOSITE SIMULATION

With the aid of e�ective MEMS device model reduc-
tion techniques, it is possible to perform fast and e�-
cient system-level composite circuit and micromechan-
ical simulations. Fig. 5 illustrates our iSIMS simulator
architecture. iSIMS provides a general event-processing
and scheduling framework that ties together various sim-
ulation algorithms needed for simulation of various classes
of devices and systems. In Fig. 5, the iterative timing
analysis (ITA) is a relaxation-based algorithm for elec-
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Figure 4: Beam center point position plotted as a func-
tion of time and arclength.

trical and functional level simulation. The models asso-
ciated with it include transistors, capacitors, inductors,
resistors and controlled sources. The Logic algorithm
processes behavioral descriptions of logic gates. Cur-
rently, the simulator includes over 40 models for logic
gates. The Analog Behavioral algorithm is developed
to handle user de�ned high-level behavioral blocks. The
reduced MEMS device models represented by a small set
of nonlinear ODEs can be e�ectively embedded in the
simulator as analog behavioral models. Event-driven,
selective trace techniques are used for the simulation.
Single timestep is not required.

To demonstrate multi-level and mixed-technology sim-
ulations, the beam device has been embedded in a cir-
cuit as shown in Fig. 6. A voltage controlled voltage
source is applied to the beam device, the output of the
beam device is its center point position. The beam cen-
ter point position is then compared with a reference po-
sition, whenever the beam center point position is less
than the reference position, a logic LOW signal is gener-
ated conditioned that the "Enable" signal is HIGH. The
reason we choose this system is that it includes various
modeling levels. The modeling levels in this system in-
clude MEMS beam behavioral-level model, controlled
voltage source function-level model, analog behavioral
comparator model, digital gate model, and electrical
models of the transistors and resistors.

)  (Small System of ODEs

 Analog Behavioral Modleling     

 

   Equivalent Circuit

   Macromodeling

MEMS Device Models

  

   

            Digital: Gate-, or Transistor-level

 Analog: Analog Behavioral-, or Transistor-level

        Mixed Signal Circuits

-- ITA Algorithm
-- Logic Algorithm

-- Analog Behavioral

Algorithms:

Routines:

-- Event Scheduler

-- Waveform Processing

-- Matrix Calculations

-- Input/Output routine

    Algorithm

Figure 5: iSIMS simulator architecture.

Digital Analog MEMS
Gate Behavioral Behavioral
Switch Functional Functional

(ideal/nonideal) (lumped circuit
Electrical Electrical equivalent model)

Table 2: Digital-Analog-MEMS simulation levels in the
iSIMS simulator.

Fig. 7 shows the simulation result. The reference
position is set to be 1:2um. The top two plots show
the input, a square-wave with varying duty cycles, and
the beam center point position response with this input.
The bottom plot shows the logic output. As can be
seen, whenever the beam center point position is less
than 1:2um, the logic signal will be LOW.
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Figure 6: MEMS beam device embedded in a circuit.
Various modeling levels are used to model this system.
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Figure 7: Simulation result of the beam-circuit system.

5 CONCLUSION

We have presented systematic methods for devel-
oping low-order dynamical models for coupled domain
nonlinear microelectromechanical devices. We also pre-
sented iSIMS, a simulation framework that allows com-
posite circuit and micromechanical simulations. The
model reduction algorithms and the reduced �xed-�xed
beam models have been integrated in the iSIMS simu-
lator. Important issues for developing multi-level and
mixed-technology simulation programs are studied.
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