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ABSTRACT

Design and verification of complete microsystems re-
quire effective models of the micromechanical components
for the simulation at system level. Particularly for force
feedback S/D-architectures, long transient simulations are
inevitable to characterize the system-inherent signal pro-
cessing. In this paper we present an energy-based method-
ology describing a general approach to deriving marco-
models of flexible, sgueeze-film damped, multi-electrode
structures for use in a network simulator. The coupling
scheme between the kinematics of the mechanical structure
and the electrical field between the electrodes alows to
incorporate additional interactions such as squeeze-film
damping. The flexibility of our modeling method proves to
be particularly valuable for the analysis of mechanically
damped eigenmodes. Complete macromodels can be
extracted from fully meshed FEM and BEM model data.

1 INTRODUCTION

Micromechanical sensing applications evolve from sim-
ple one-dimensional towards complex multi-dimensional
systems. State-of-the-art designs include sophisticated 3D
acceleration sensors [1] or 2-axis gyroscopes [2]. As a con-
sequence, multiple force feedback loops as system architec-
tures are very popular. Since the feedback makes the sys-
tem operate around a predefined fixed state, these architec-
tures provide good linearisation, low cross-coupling and
low sensitivity to mechanical and geometrical design
parameters. They are often implemented as S/D-architec-
tures [1]. Besides an A/D-conversion, this type of feedback
architecture is favored for its perfect compatibility with
integrated CMOS switched capacitor circuitry.

A quantized feedback signal is a characteristic of S/D-
architectures, causing the mechanical structure to be sub-
jected to forces which have a broadband frequency spec-
trum. As avital part of the loop, the structure acts as a low-
pass filter on this spectrum. Hence, parasitic excitation of a
number of eigenmodes can affect the loop’s stability and
signal processing. Therefore, design and verification of
force feedback S/D-architectures require simulation models
of the micromechanical components which properly
describe their dynamic behavior including the eigenmodes
which lie in the frequency band of interest. These models
have to be computationally efficient, since long transient

simulations at system level are inevitable for the analysis of
the system performance. Non-linear behavior and cross-
coupling effects can additionally affect the system and
should be considered within the models.

In this paper, we describe an energy-based methodology
of macromodeling which is particularly suited to meet the
above requirements. Established methods exist for
suspended, rigid, multi-dimensional structures [3]. With a
view to automated model generation, the described method
is a general approach for deriving marcomodels of flexible,
sgueeze-film damped, multi-electrode structures for usein a
network simulator. It is based on a formulation of the
structure’ s dynamics by Lagrange’s equations [4] in combi-
nation with a reduced version of Reynold’s equations [5].

d

. electrodes

Figure 1: hinged micromechanical teststructure

The methodology is applied to a micromechanical plate,
suspended on 4 springs as shown in Fig. 1. It is a
teststructure for a detection and force feedback circuit,
which simultaneously senses the deflection of the plate
along the z-axis and the tilt around the j -axis. Therefore,
we find two electrodes on each side of the plate which,
besides capacitive sensing of the position, are used for
electrostatic force feedback. The plate is encapsulated
between a substrate and a lid, thus forming two small gaps,
which give rise to sgueeze film damping.

2 THEORY
The method is based on Lagrangian eguations [6]:
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where T denotes the kinetic energy, Ey.: the potential
energy, o, the generalized coordinates, (), the generalized

velocities, t the time and F, the generalized forces.

In this approach, the kinetic energy T and the mechani-
cal deformation energy Epoqe represent the kinemétics of
the mechanical structure. Coupling of the kinematics with
conservative energy domains can be described using the
potential energy [4], while the use of the generalized forces
F, alows for the coupling with non-conservative energy
domains.

The Lagrange's equations contain implicitly a reduced
formulation of the kinetic differential equations of the
structure. A set of discrete generalized coordinates g, hasto
be associated with the possible motions of the mechanical
structure. For a continuously deformable structure an infi-
nite number of coordinates would be necessary which re-
present the infinite number of dynamical degrees of free-
doms. Hence, reduction to a limited number of coordinates
restricts the possible configurations (e.g. shape and posi-
tion) of the mechanical structure.

With a view to automated model generation, a basis set
of orthogonal deformation shapes u; is used to define the
restricted configuration space of the structure. The gen-
eralized variables g, are introduced as the respective linear
expansion coefficients. As a consequence, the construction
of the macromodel, (i.e.: the formulation of the kinetic
energy T and mechanical deformation energy Epq ¢er) Can be
easlly related to data and quantities from FEM models:
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Here, M denotes the mass and K the stiffness matrices
of the FEM model, U the orthonormal basis of deformation
shapes with respect to the FEM model, and M, and K e
the mass and stiffness matrices of the reduced model.

Non-linear material effects can be incorporated in the
macromodel by introducing stiffness and reduced stiffness
matrices which depend on the generalized coordinates g.
Evaluation of the stiffness matrices at a number of pointsin
the configuration space with subsequent interpolation leads
to analytical expressions of the reduced stiffness matrices
and of the deformation energy calculated from it. In this
way, we arrive at a computational efficient macromodel.

As the energy of quasistatic electrical fields is conser-
vative, the coupling of the mechanical and the electrical
energy domain can be described by the electrical potential
energy [4,8] and its derivatives, respectively:
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Here, C; denotes the capacitance matrix of the multi-
electrode structure and V is a column vector consisting of

the bias voltages on the electrodes. Since the expression
requires the partial derivative of the capacitance matrix G,
an analytical expression of the matrix is desirable. Similarly
to the non-linear stiffness matrix, this can be achieved by
fitting BEM capacitance data of the multi-electrode system
at anumber of points in the considered configuration space.
Furthermore, this formulation enables the implementation
of the model in an electrical circuit smulator, since the
applied voltages together with corresponding current terms
[7] define “across’ and “through” quantities, as they are
required for the generalized Kirchhoffian network
description.

The presented methodology also covers compressible
isothermal sgueeze film damping. This type of damping
occurs in a thin viscous gas film in a small gap between
mechanically movable parts, a situation which is very
common in surface-micromachined devices. Squeeze film
damping is described by Reynold’'s equation [9] below, in
which the pressure p is substituted for the gas density r
under the assumption of an isothermal process.
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Here, p denotes the pressure, h the gap height, P, the
ambient pressure and h the viscosity. Q, is a correction
term introducing an effective viscosity related to the ‘dlip’,
which is occurring for high Knudsen numbers. The
cartesian coordinates x and y refer to the planes paralel to
the gap.

Hung et a. showed Reynold’s equation can be reduced
by applying the Galerkin method in combination with an
orthogonal basis set of pressure distributions [5]. To be able
to perform the necessary integration, Reynold’'s equation is
fully linearized with respect to the pressure p and the gap
height h at a given pressure po(X,y) and height ho(x,y). After
integration we get as reduced model equation:
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where p, are the linear expansion coefficients with
respect to the orthogonal basis set of pressure distributions,
pi the i-th pressure distribution, g, the generalized
coordinates, u;, the z component of the i-th deformation
shape, py and gy the ‘amplitudes at the linearisation
point, d, the initial gap separation and PDP, PH, PP, PDH,
R the integrals of the linearized Reynold’s equations. The
remaining term R account for the fact that the equation is



not necessarily linearized at the initial gap separation d, and
ambient pressure Pa.

An identical integration can be used for a formulation of
finite elements for the squeeze film. For this case, a prede-
fined form function for the pressure distribution is used
which is related to node values. This form function has to
be of such an order, that the pressure gradient is continuos
between neighboring elements. Thus, constant mass flow is
ensured. If such a FEM element is formulated or elsewhere
available, the reduced Reynold's equation can be obtained
by simple matrix multiplications of the node vectors
representing the pressure distributions with respect to the
FEM system metrices, as it was done in the mechanical
case. Non-linearities can be modeled by interpolation
analogous to the mechanical case described above.

While coupling with the mechanical structure is already
incorporated in Reynold's equation, the action of the gas
pressure on the mechanical structure has to be considered.
Since energy dissipation occurs in the gas film, the coup-
ling force cannot be obtained as derivative of an energy
function. Instead, the generalized force term F, represents
the coupling term in this case:
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As result of the integration, we get a matrix WP, for
the required coupling term. Obvioudly, the occurring inte-
gration can aready be evaluated at FEM level. If a corres-
ponding term is added in the used mechanical FEM
element, WP, is obtained by simple matrix multiplication.

3 CHOICE OF BASISFUNCTIONS

The construction of the macromodel is completed by the
definition of orthogonal basis functions for the pressure and
deformation configurations. Various methods have been
proposed for obtaining proper basis sets, among others
mechanical harmonic mode shapes [10] and FEM data
obtained from transient runs[5].

The choice is strongly influenced by the system behav-
ior to be investigated. In the case of S/D-loops the load
conditions on the system are not predictable and, as a con-
seguence, short transient analysis is not significant for the
system behavior. Due to the feedback forces, the system
operates around a preselected fixed state. Therefore, we
find it favorable to choose a finite subset of the eigenmodes
of the coupled system linearized at this state, to define the
reduced manifold of deformation and pressure configura
tions. Damping, frequency and deformation information
associated with an eigenmode serve then as selection crite-
rion for the modes to be used. Since the eigenmodes of the
coupled system differ in shape and eigenfrequency from the
ones of the undamped mechanical structure, a more accu-
rate representation of the coupled system can be expected,
a least in a predefined frequency range for a given number
of modes.
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Figure 2: Eigenmodes of the coupled system. Left:
fundamental mode at P=10"" Pa, upper right: distorted
mode at P=10° Pa/ -225.1 kHz, lower right: distorted

mode a P=10° Pa/ -1.8 MHz.

Of coursg, it is a prerequisite for this procedure, that
either a FEM model or an analytical model of the coupled
system exists. Furthermore, since the static response of the
system requires that the pressure configurations behave
independently of those of the mechanical motion, the
eigenmodes of the coupled system have to be decomposed
into the corresponding parts. Since the consequently ob-
tained basis sets are not orthogonal, their backortho-
gonalisation is necessary.

If FEM models are available for the coupled problem,
the methodology can be automated, since in this case the
construction of the macromodel and the choice of the bases
is exclusively determined by the meshed FEM model data.

4 TESTSTRUCTURE

As an example we consider the teststructure shown in
Fig. 1. To modd it, a four-sided, mechanical FEM shell
element formulation was extended by the matrices
describing the Reynold’s equations and the coupling. Here,
the Reynold’'s equations has to be solved in two separate
domains formed by the lower and upper gap of the
structure. With the eigenmodes of the coupled system,
obtained from a moda analysis performed on the FEM
model, the macromodel was constructed.

The macromodel has 4 eigenmodes for each set of one
deformation and two pressure configurations (one for the
upper and one for the lower gap). Using the fundamental
deformation and pressure configuration shown in Fig. 2 as
complete basis sets, the complex eigenfrquencies of these 4
eigenmodes are listed in Table 1. At low pressure, when
damping is negligible, we can expect that the coupled
model of the system gives 4 eigenmodes at the same
common eigenfrequencies. Table 1 validates this statement.
Therefore, the corresponding eigenvectors of the coupled
system are composed of the almost identical fundamental
pressure and deformation shapes of Fig. 2.



Table 1: Comparison of the eigenfrequencies (E.F.) of the
macro model and the coupled FEM model.

model macro | FEM macro | FEM

p/Pa lel 1e5
1E.F/Hz | -2.0309 -2.0309 | -15.7e3 | -13.3e3
2E.F/Hz | -2.0319 -2.0312 |-186.5e3 | -225.1e3
3E.F/Hz |-14e-4+i* | -4e-3ti* | -1.83e6 | -1.80e6
4EF/Hz | 51.36e3 | 51.35e3 | -2.03e6 | -2.03e6

At higher pressure, when damping gets relevant, this
relation is no longer valid. Table 1 again lists the eigenfre-
guencies, which are obtained with the fundamental shapes
as complete basis sets for the damped macromodel. The
coupled system ill has corresponding eigenmodes near
these frequencies. The eigenvector at the lowest frequency
gtill matches with the fundamental shapes, but the other
ones are distorted due to the damping. Two of these defor-
mation shapes are shown in Fig. 2. Further, their eigenfre-
guencies shift due to the damping. If these eigenfrequencies
till lie in afrequency range, which shall be correctly repre-
sented, additional shapes have to be added to the basis sets
of the macromodel. With a view to choosing a minimum
number of configurations in a specified frequency range,
the propre choice are the distorted eigenmodes, selected by
means of their eigenfrequencies and mode shapes.

The model of the teststructure, constructed with 4
eigenmodes inserted into the basis sets, was implemented in
a system simulator and embedded in the S/D sense and
feedback circuit. Fig. 3 shows the output spectrum of one
sense loop at low pressure. Since detection and feedback of
the z-component is not orthogonal to one of the higher
eigenmodes, this mode is excited. This is indicated by a
negative peak in the spectrum. As we have shown
elsawhere [7] this kind of excitation can cause the loop to
get locked at the corresponding eigenfrequency. Thus, the
performance of the signal conditioning is significantly
lowered. Similar results were found for this teststructure
here, demongtrating, that excitation of eigenmodes can be
crucia for the stahility of force feedback S/D-architectures.

5 CONCLUSION

The above results demonstrate that incluson of
damping effects and eigenmodes in macromodels for
flexible, squeeze-film damped, micromechanical structures
is crucia for the verification of the system performance.
The described methodology incorporates these non-
idedlities and the choice of eigenmodes related to the
coupled system ensures correct representation of the
dynamical system behavior in a certain frequency range.

By use of appropriate FEM models, the construction of
macromodels can be automated by this methodology. The
presented coupling scheme can be adapted for other
physical domains to extend the region of validity of the
macromodels.
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Figure 3: normalized output spectrum for z-axis
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