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ABSTRACT

The oxygen precipitation in high purity CZ-silicon for
ULSI is investigated with regard to the LO-HI and HI-LO-HI
annealing processes used for denuded zone formation. The
precipitation can be treated as a stochastic phenomenon and
described using the chemical Rate Equations (RE) for small
precipitates and Fokker-Planck Equation (FPE) for larger size
domain. These key equations are connected to the point
defect continuity equations (CE). The latter describe the depth
and time dependency of the point defect concentrations inside
the wafer. This paper presents a robust, stable and accurate
numerical simulation of oxygen precipitation and annihilation
in silicon. The main parameter, precipitate size distribution, is
calculated as a function of depth and time. A C++ parallel
program was developed and implemented on the Cray T3E
Scalable Parallel Computer. MPI message passing interface
was used for the inter-processor communication. The
simulation results are compared to the experimental data
obtained by FTIR1 and OPP2 measurement.
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1 PHYSICAL MODEL

The kinetic of oxygen precipitation in CZ-Si is described
by the rate equations (RE) [1] and uses the homogenous
nucleation principle. These provide the evolution of the size
distribution of oxygen precipitates, 2SiO  clusters containing

n oxygen atoms. The precipitates grow at a rate ),,( txng  and

concurrently dissolve at a rate ),,( txnd . The size distribution
function is related to the oxygen atom fluxes as follows
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),,( txng  and ),,( txnd  are expressed using Gibbs free

energy of the system [12]. Note that  t)(x,Ct)x,f(1, O=
where ),( txCO  is the oxygen interstitial concentration.

Precipitates of single 2SiO  molecule up to 11
max 10=n

oxygen atoms are considered. The number of RE is equal to
                                                       
1 FTIR: Fourier Transform Infra Red spectroscopy
2 OPP   Oxygen Precipitate Profiler

the maximum precipitate size and thus must be limited,
practically to 200 =n . Above this number the discrete
representation RE is extended by the Fokker-Planck equation
(FPE), which is a representation of the system in a continuum
size domain [1]
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where A, B are respectively the advective and diffusion terms
and are function of the growth and dissolution rates. The
diffusion term describes a random change in precipitate size,
which results in a flux from highly populated to less
populated sizes. The advective term describes the growth of
the precipitates for lowering the system total free energy.
Oxygen, self-interstitials and vacancies ( )VIO ,, interact at
the matrix-precipitate interface according to the reaction

( ) σαβα stressISiOVOSi ++↔+++ 22221 2            (4)

Where   and βα are the fraction of I and V emitted or

absorbed per precipitated oxygen atom. The system is then
diffusion-reaction limited. The point defects concentration in
the matrix is given by the following continuity equations [1]
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Where 1=p ; 0=q ; 0=C  if OX =
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IVk  is the rate for the generation of Frenkel pairs.

The precipitated oxygen concentration OPOC ,  is given by

∫∑ +
+=

max

0

0

1
2

, ),,(),,(
n

n

n

OPO dntxnnftxnnfC                            (6)



2 INITIAL AND BOUNDARY CONDITIONS

CE: The initial oxygen concentration )0( =tCO , is a known
process parameter, measured by FTIR. We have assumed

eq
II CtC == )0(  and 3151)0( −== cmEtCV  corresponding

to the vacancy rich wafers used [10, 13]. At the surface of the
wafer, point defect concentrations were assumed at their
equilibrium value

V), I (O,Xfor             ),0( === eq
XX CtxC                         (7)

whereas at the half of the wafer thickness (200-300 µm) the
Neumann condition ( 0=∂∂ xCX ) is applied.
FPE: Available experimental tools cannot provide the size
distribution in the as-grown wafer, due to the small
precipitate size, two orders below their detection limit.
Therefore a power law variation of the initial size distribution
is used [8].
The FPE requires two boundary conditions in n-space. The
fluxes calculated with RE and FPE must match at 0n

( ) ( )txnItxnJ ,,,, 00 =                                                             (8)

The no-flux condition at nmax expresses the mass
conservation. It provides a mean for limiting the precipitate
size. Also it encompasses the stability feature of big
precipitates. The number, nmax value previously mentioned, is
estimated from TEM3 measurements [9].

0),,( max =txnI                                                                  (9)

3 NUMERICAL METHOD

The oxygen precipitation is a time dependent problem,
in two dimension (n, x)-plane. The FPE and CE are parabolic
in regard to the space coordinate and precipitate size. The
unknowns in this problem are the size distribution f(n,x,t) for

2≥n  and the point defect concentrations
( ) ),( ),,( ,, txCtxCtxC VIO . To ensure the convergence for

very long annealing times, implicit finite difference methods
were used for the two sets of equations. These are known for
their convergence and unconditional stability [4,5].
Nevertheless, this stability is at the price of greater
computational complexity since we have to solve for the
coupled PDEs, a large set of simultaneous linear systems.

Tests realized with Crank-Nicholson Method (CNM)
showed that finite oscillations close to the boundary values,
often occur when the time step increases. CNM is not
dissipative [5] which prevents short wavelength noise from
decaying away. These oscillations were found to be due to a
large differences of several orders in the point defect
diffusivity ( OVI DDD >>>> ). The use of Douglas implicit
approximation [4] for the CE, has removed these oscillations.
Douglas implicit method is similar to CNM except that
additional terms utilized in the central-difference series make
it more accurate in space. The Douglas method approximates
the CE at the point ( ){ }tjxi ∆+∆ 2/1,  by

                                                       
3 TEM: Transmission Electron Microscopy
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Douglas scheme is unconditionally stable and has a local

truncation error of )()( 42 xOtO ∆+∆ .
For FPE the n-space operators is approximated using the fully
implicit Chang-Copper (CC) method [2,3], which was proved
to be a robust finite difference scheme for this kind of
equation [3]. The CC method proposes the following
differentiation scheme for Eq.3 and uses a centered difference
on the diffusion term and a weighted difference on the
advective term
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The flux at the point 2/1+in is sampled as following
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This scheme adjusts the weight 2/1+iδ  so that the
differenciation of the advective term is always “upwind”.
This property makes the CC method first-order accurate in
both space and time.  mδ  monotonically decreases from 1/2

to 0. The value of mδ  given below, ensures the mass
conservation property, as well as the positiveness of the
solution, for all values of n and ∆∆t
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Subsequent choice of the size-step becomes only dictated by
the accuracy. In order to build up the solution we need to scan
small sizes as well as reach very large ones; this is made
possible by using a logarithmic size mesh which resulted in a
significant decrease in the actual computation time. Note that
the linear systems obtained from CE and RE/FPE are
tridiagonal and are solved by the Gauss elimination algorithm.

4 AUTOMATIC TIME-STEP CONTROL

A critical issue arises from long time annealing [9]
and the need of a common time stepping procedure for CE
and FPE sets of equations, which must preserve the accuracy.



In most physical problems formulated by parabolic PDE, the
solution tends to a steady state, which is understood as a
gradual decay of the exponential terms [4,5]. Therefore, as
the annealing time progresses, larger steps must be taken. The
program must adjust the time step in order to maintain a
specific accuracy. The method of step doubling and local
extrapolation was applied. We select the step size in order to
keep the “per step local error” below a predetermined value.
First, the time integration goes over a compound of two half
steps 2/t∆  to predict the value ui at point xi; Then, the
solution iu~  at xi is estimated using a time step equal to t∆ . If
a differentiation scheme is of order p, its local truncation error

is ptcT ∆= . Richardson extrapolation [4] has been used for
the estimation of  T at xi , which was found to be
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The estimated error is compared to a tolerance ε . If T is
much greater than ε , the compound step is rejected and a
smaller time step is taken. A random number weights the
current time step in order to eventually break the stationary
states of the algorithm.

5 PARALLEL IMPLEMENTATION

At each time step we solved 130 linear systems of size
150x150 for RE and FPE and three linear systems for the CE.
A Matlab version developed for Sun Sparc workstation
indicated that few days will be necessary to entirely solve the
time and depth dependent problem of the first step annealing
(8 hours) in the LO-HI process. This serious problem was
overcome by developing a parallel version implemented on
the Cray T3E supercomputer. The Cray T3E is a parallel
scalable MIMD [6] system including 64 processors totaling
one GFLOPS computation power. The entire program was
rewritten in C++ language using the Linear Algebra Package
LAPACK. MPI message passing interface was used for the
inter-processor communication.

The three distinct stages required for the design of the
parallel process are: task partitioning, data dependence and
communication analysis, and mapping [6,7]. Since the
physical problem is computationally extensive and possesses
several coupled systems, we have adopted a coarse grain
functional partitioning. We focused on task decomposition,
which results in a specific data stream for each processor such
that the overall communications are minimized. A parallel
task )130 (1   ≤≤ kTk  compute ),,( txng , ),,( txnd  and one
linear system associated to FPE for a given depth x. A
master-slaves mapping approach was used. Each task kT is
assigned to a slave processor in a “round robin” way. The
master processor solves the CE, estimates the local truncation
error and the new time step. The tasks Tk are independent [7].
The communication occurs only between the master and each
slave. The program is parameterized such that it can run on
any number of processors p. As p increases, the CPU time
decreases toward an asymptotic value, Fig. 1, which is
reflected on the speedup and the efficiency, Fig. 2. The
chosen mapping led to a linear speed-up up to 16 processors,

with a maximum efficiency [6] equal to 0.9. The speed-up
and efficiency presented in Fig. 2 are independent of the
thermal process since a static scheduling [7] was adopted.

6 EXPERIMENTAL RESULTS

Simulation of the HI-LO-HI process and the effect of the
nucleation step on subsequent annealing steps was carried out
and compared to the experimental data by T. Sasaki [10]. The
annealing cycles considered are:
1. LO-HI anneals: a nucleation step at 750°C for different

times tLO= 8, 16, 36, and 64 hr followed by a growth
anneal at 1050°C for 16 Hrs in nitrogen.

2. HI-LO-HI anneals: the same as above but prior to the
nucleation step an out-diffusion pre-anneal was made at
high temperature, 1250°C for 1 hour in Ar.

Note that the critical radius of a precipitate increases with the
heat treatment temperature. Precipitates larger than the
critical size grow while small ones shrink. The simulated size
distribution behavior appears to be in good agreement with
the experimental results, compare the shape of the curves in
Fig. 3 (a) and (b). The simulated distributions for the LO-HI
annealing in Fig. 3 (a) show that the precipitate density
increases with the nucleation time (duration of the LO step).
The precipitate size is affected by the LO annealing times
while the HI time is maintained identical for all LO-HI tests.
As the LO time increases, the size distribution after the HI
step tends to reach a maximum value, compare the 36 hr and
64 hr distribution in one side and the 16 hr in the other side,
see Fig. 3 (a). The saturation indicates that the precipitates
tend to reach their equilibrium size, this situation occurs in a
similar way for all precipitate sizes.

Figure 4 (a) reports the simulation results of the three-
step annealing treatments, HI-LO-HI thermal process. Like
the published experimental data, only the half of the size
distribution curves are presented. Note the 5 nm shift in the
integrated density. This is attributed to the OPP new
technique, which has required a deconvolution of the signal in
order to separate the true size distribution from the ghost
image [11]. Both the physics and the deconvolution algorithm
are not yet established, and might need improvements.

Since a large precipitate critical size is associated with
the annealing temperature of 1250oC, during the HI step (pre-
annealing treatment) a large part of the latent micro-defects
shrinks and vanishes. Unlike the LO-HI, in the first step of
the HI-LO-HI process, the grown-in defects dissolve, and
during the subsequent step (LO) oxygen clusters
homogeneously giving rise to new nuclei. These are expected
to have lower density than the grown-in sites, which were
used for a heterogeneous nucleation in the LO-HI cycle. The
difference in nuclei site density resulted in a lower precipitate
density calculated after the three step annealing. This is
supported by the experimental data [10], where the variation
in the size distributions is larger than in the case of LO-HI
anneal (compare for instance the gaps between 36 hr and 64
hr curves for both cycles in Fig. 3 (b) and Fig. 4 (b)).

7 CONCLUSION

Parallel computing on the Cray T3E appeared valuable
and efficient for simulating precisely the oxygen precipitation



in CZ-Silicon which is a time, depth and size dependent
problem of and to handle long annealing times. Our
simulation matches the main features of available
experimental data. We found that the actual precipitation in
the LO-HI process does not depart from a homogeneous
nucleation. The simulation was instrumental in calibrating the
newly developed OPP technique for micro- and nano-defects
measurements in high purity silicon.
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