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ABSTRACT

We present parallel algorithms for the solution of
microfluidic equations. The algorithm consists of the
multigrid method in combination with adaptive finite
elements. These methods give good algorithmic and
parallel scalability and are thus very efficient. Model
test problems are taken from Electroosmotic flow simu-
lations.
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1 Introduction

Models simulating flow through microchannels usu-
ally consist of complicated equations defined on complex
domains and are thus very expensive to solve. For ex-
ample, solving the equations which model reactive flow
through microchannels consumes a great deal of com-
putational resources, as pointed out by Hsing in [4]. It
is this type of equation which we are aiming to solve.
One way of meeting such requirements on computing
power is to use parallel computers (or distributed com-
puting), but this approach on its own is not enough. To
make full use of available resources one must use state-
of-the-art mathematical algorithms. We feel that this
approach will allow us to include details in the model
which would otherwise be impractical.

In this paper we present some scalable algorithms
for use in the modeling of microfluidic devices. These
algorithms are designed to show both parallel and algo-
rithmic scalability. By algorithmic scalability we mean
that the solution time should only increase linearly with
the number of grid points.

2 Solution Techniques

To achieve the aims mentioned above we are using
multigrid methods and/or domain decomposition meth-
ods in combination with adaptive finite elements. As the
name suggests the multigrid method uses several layers
of (usually) nested grids. Each grid layer is designed
to remove different frequency components of the error
and it has been shown that by combining the informa-
tion associated with each grid level in a certain way,

this method gives optimal convergence for many types
of equations. See for example [1], [2], [6], [7]. In the do-
main decomposition method the grid is subdivided into
a set of overlapping subdomains. The problem on each
subdomain is solved independently so this method is
well suited to a parallel environment. If a coarse grid is
used to recover the global information then domain de-
composition methods also show optimal convergence for
different types of partial differential equations. See for
example [11] or the WWW site http://www.ddm.org/.
Another good source of information on both the multi-
grid and domain decomposition methods is the MGNet
Home Page [3].

The nested sequence of grids needed by the multigrid
method is built by repeatedly applying a refinement pro-
cedure. That is, we start with an initial coarse grid and
then refine the grid to build the next finest level. This
procedure is repeated until the grid is fine enough to
give an accurate solution. The grids may be built by
using either uniform refinement or adaptive refinement.

These algorithms have been implemented in a C*t+
program built upon a very flexible parallel data struc-
ture. The program has been used to model a variety of
problems such as the flow through heterogeneous ma-
terial [5] and Plasma Ion Immersion Process [10]. In
the case of flow through heterogeneous material we were
able to solve problems which were larger then what had
been previously reported in the literature.

3 Example Runs

3.1 Model Problem

To demonstrate these ideas we have taken some equa-
tions from the cross-channel problem presented in [8]
and [9]. Many examples of biological micromechanical
systems consist of an injection channel and a separa-
tion channel which run perpendicular to one another.
The separation of fluid components is usually carried
out in the capillary (separation) channels and the flow
into these channels is controlled by an electrical current.
This is modeled by electroosmotic flow.

The results presented in this paper are for the two
equations:



V%) = Asinh(c)), (1)
Vi = 0, (2)

where ¢ is the potential due to the external electric field,
and 1t is the potential due to the charge on the walls.
The values for A and ¢ used in our current examples are
A =2x10* and ¢ = 0.02.

The full set of equations given in [8] and [9] also in-
clude Navier Stokes equation for the velocity and pres-
sure. We have extended our code to handle Navier
Stokes equations and plan to conduct some example
runs soon.

The injection channel and separation channel are
represented by the following domain:
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When solving for 1, the potential is set to —1 on
all of the walls with insulation-type boundary at the
reservoirs. In the case of the potential ¢ the boundary
is set to insulation-type boundary condition on all of the
walls and ¢ = 1 at reservoir 1 and ¢ = 0 at reservoir
2. The value of ¢ at reservoirs 3 and 4 can be varied to
simulate different experimental settings.

As pointed out in [9] there is a singularity at the four
corners where the two bars cross. The spacing of the grid
near these four corners needs to be reduced to ensure
an accurate solution. We use an automatic adaptive
refinement procedure to capture the rapid change in the
solution.

3.2 L-shaped Domain

The singularity at these corners is similar to the sin-
gularity which occurs at the corner of an L-shaped do-
main, as shown in Figure 1. As an initial test of our
algorithm we tried to solve the equation Au = 0 on the
L-shaped domain with boundary conditions such that
the exact solution is u = r2/3sin(2/30) .
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Figure 1: Fine grid after five levels of adaptive refine-
ment.

Table 1: Table showing solution time and convergence
rate with uniform refinement of the L-shaped domain.
n | |||l | Solver | Refine. | FEM
x107° | (sec) (sec) | (sec)
225 2000 | 0.24 0.034 | 0.035
833 1300 1.1 0.13 0.14
3201 830 4.9 0.54 0.58
12545 520 23 2.2 2.4
49665 330 100 9.1 9.8

The results for uniform refinement are given in Ta-
ble 1. The first column is the number of nodes n. The
second column, labeled |||/, shows the maximum er-
ror. Notice that the convergence rate falls far short of
the ideal rate of O(h?). Table 2 gives the results for
adaptive refinement. In this case the convergence rate
is close to O(h?). As a consequence of the increased con-
vergence rate we are able to obtain a higher degree of
accuracy in a reduced amount of time. For example, us-
ing uniform refinement it takes approximated 6 seconds
to get an error of 8.3 x 1073, but when using adaptive
refinement an error of 8.0 x 1073 is obtained in about
2.3 seconds.

Table 2: Table showing solution time and convergence
rate with adaptive refinement of the L-shaped domain.
n | |||l | Solver | Refine. | FEM
x107° | (sec) (sec) | (sec)
92 2100 0.23 0.054 | 0.020
408 800 1.5 0.70 | 0.075

2068 160 4.1 1.7 0.38
9199 34 23 8.8 1.9
44420 5.6 140 47 9.5




Columns 3-5 in Tables 1 and 2 show the time spent
in the major modules. The ‘Solver’ columns displays the
amount of time require to solve the system of equation
using the multigrid method!. In Table 1 we see that
the solution time is linearly dependent on the number
of nodes, as predicted. The linear dependence is not so
clear in Table 2. Before refining a grid we must solve the
system of equations on that level and the solution time
shown in Table 2 includes these coarse grid solves. If
we just looked at the time required to solve the problem
on the finest, final, grid then it would be more easy to
see the linear dependence. Finally, the column labeled
‘Refine’ shows the time spent refining the grids and the
column labeled ‘FEM’ gives the time taken to form the
discrete system of equations by using the finite element
method.

3.3 Example Runs

We now present some example results obtained from
the solution of Equations 1 and 2. When solving for ¢
we set the boundary conditions at reservoir 3 and 4 to be
0.9. The solution for ¢ and 1 are given in Figures 2 and
3 respectively. A physical interpretation of the results
is given in [8] and [9], we are going to concentrate more
on the properties of the algorithms.
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Figure 2: Potential due to external electric field.

Figure 4 shows a resulting grid if the adaptive refine-
ment procedure is applied to Equation 2. Notice that
most of the refinement is around the walls, which reflects
the way that 1) changes rapidly near the walls.

I'We used six iterations of the V-scheme method. Six sweeps of
the Jacobi method formed the pre and post smoothers. Interpo-
lation operator is linear interpolation and the restriction operator
is defined to be the transpose of the interpolation operator.
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Figure 3: Potential due to charge on walls.

All of the steps used in the solution of the equations
can be done in parallel, including the refinement proce-
dure. In Figure 4 we can see what the grid looks like if
it is refined on four processors. The dark region passing
through the center of the cross show the regions where
the grid is shared by two or more processors.
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Figure 4: Fine grid after one level of uniform refinement
followed by three levels of adaptive refinement. The grid
has been split up over four processors.

The final property we would like to look at is the
parallel scalability of the algorithms. Table 3 highlights
the time taken to solve Equation 2 on different num-
bers of processors. Uniform refinement was used?. The

2In this case 12 pre and 12 post smoothers were used in the
multigrid method.



Table 3: Table showing solution time for solve Equation
2 in parallel.

P n | Total | Solver | Refine. | FEM | E
(sec) | (sec) (sec) | (sec) | %

1 54145 | 213.2 192.4 10.1 10.6
2 54145 | 1174 | 105.5 6.3 5.0 | 91
4 214785 | 231.3 | 207.8 11.8 10.8 | 91
8 214785 | 122.1 107.4 6.4 5.4 | 87
16 | 855553 | 249.4 | 221.8 13.3 | 10.9 | 84
32 | 3415314 | 599.1 | 437.5 28.5 21.5 | 67

efficiency was calculated by using the following equation
- tl nyp
ptp ni

where t,, is the time for p processors and n, is the num-
ber of nodes.

We feel that the results presented in Table 3 are very
encouraging. It is difficult to get high efficiency results
for this type of problem since we start with a very coarse
grid (81 nodes) which means that we have to refine the
grid several times before we have enough nodes to fill
up all of the processors. Fortunately though these costs
are one-off costs. When the computations for Navier
Stokes equations are included we believe that we will
see better efficiency results because the percentage of
time spent rebalancing the load will be reduced. Note
that the solver module is showing good efficiency results
(87% for 32 processors).

4 Conclusion

We presented a parallel algorithm for the solution
of equations arising in microfluidic models and showed
that they give good parallel and algorithmic efficiency
results.
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